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Abstract— Traditional approaches to designing multi-agent sys-
tems are offline (in simulation), and assume the presence of
a global observer. In the online (real world), there may be
no global observer, performance feedback may be delayed or
perturbed by noise, agents may only interact with their local
neighbors, and only a subset of agents may experience any
form of performance feedback. Under these circumstances, it is
much more difficult to design multi-agent systems. DAEDALUS
is designed to address these issues, by mimicking more closely the
actual dynamics of populations of agents moving and interacting
in a task environment. This paper addresses the feasibility of
DAEDALUS for agents moving towards a goal through an obstacle
field, where the obstacles can obstruct perception.

I. INTRODUCTION

Engineering multi-agent systems is difficult due to numerous
constraints, such as noise, limited range of interaction with
other agents, delayed feedback, and the distributed autonomy
of the agents. One potential solution is to automate the design
of multi-agent systems in simulation, using evolutionary algo-
rithms (EAs) [1], [2]. In this paradigm, the EA evolves the
behaviors of the agents (and their local interactions), such that
the global task behavior emerges. A global observer monitors
the collective and provides a measure of performance to the
individual agents. Agent behaviors that lead to desirable global
behavior are hence rewarded, and the collective system is
gradually evolved to provide optimal global performance.

There are several difficulties with this approach. First, a
global observer may not exist. Second, some (but not all)
agents may experience some form of reward for achieving
task behavior, while others do not. Third, this reward may be
delayed, or may be noisy. Fourth, the above paradigm works
well in simulation (offline) but is not feasible for real-world
online applications where unexpected events occur. Finally,
the above paradigm may have difficulty evolving different
individual behaviors for different agents (heterogeneity vs
homogeneity).

In our prior work [3], we introduced “Distributed Agent
Evolution with Dynamic Adaptation to Local Unexpected
Scenarios” (DAEDALUS), for engineering multi-agent systems
that can be used either offline or online. We will show how
DAEDALUS can be used to achieve global aggregate behavior
of agents that move through an obstacle field towards a goal.
The obstacles obstruct the perception of the agents (i.e. they
act to degrade the interactions between agents).

A. DAEDALUS

With the DAEDALUS paradigm, we assume that agents
(whether software or hardware) move throughout some en-
vironment. As they move, they interact with other agents.
These agents may be of the same species or of some other
species [4]. Agents of different species have different roles
in the environment. The goal is to evolve agent behaviors
and interactions between agents, in a distributed fashion, such
that the desired global behavior occurs. Let us further assume
that each agent has some procedure to control its own actions
in response to environmental conditions and interactions with
other agents. The precise implementation of these procedures
is not relevant, thus they may be programs, rule sets, finite
state machines, real-valued vectors, force laws, or any other
procedural representation. Agents have a sense of self-worth
or “fitness”.

Each robot of the swarm is an individual in a population
that interacts with its neighbors. Each robot contains a slightly
mutated copy of the optimized control procedure found with
offline learning with an offline EA. This ensures that our
robots are not completely homogeneous. We allowed this slight
heterogeneity because when the environment changes, some
mutations perform better than others. The robots that perform
well in the environment will have higher fitness than the
robots that perform poorly. When low fitness robots encounter
high fitness robots, the low fitness robots ask for the high
fitness robot’s rules. Hence, better performing robots share
their knowledge with their poorer performing neighbors. To
ensure the capability of adapting to further changes in the
environment, robots also occasionally mutate their own rules,
according to a pre-defined mutation rate attached to that robot.
In our original version of DAEDALUS, the robots do not
exchange mutation rates when they exchange the rules.

B. Obstructed Perception

When a robot can not see another robot, due to the presence
of obstacles, we call this “obstructed perception.” When the
robot’s line of sight lies along an edge of an obstacle, the
robots are capable of sensing each other. Surprisingly, this is
not generally modeled in prior work in this area [12]. Figure 1
shows an example scenario of obstructed perception. The larger
circle represents an obstacle, and A and B are robots. We
define minD to be the minimum distance from the center of
the obstacle to the line of sight of robot A and robot B, and
r is the radius of an obstacle. If r > minD, the robot A and
robot B have their perception obstructed.1-4244-0166-6/06/$20.00 @2006 IEEE



Fig. 1. Sensing capability of two robots (A, B) is obstructed by a large
obstacle (C).

We utilize a parameterized description of a line segment [10]
to find the minD.

term1 = (((1 − q) ∗ Xa + q ∗ Xb) − Xc)
2

term2 = (((1 − q) ∗ Ya + q ∗ Yb) − Yc)
2

minD =
√

[term1 + term2] (1)

where Xa, Xb are the x positions of robots A and B, Ya, Yb

are the y positions of robots A and B, Xc and Yc are the x and
y positions of the center of an obstacle, and q is the minimum
function that is defined by

((Xc − Xa) ∗ (Xb − Xa) + (Yc − Ya) ∗ (Yb − Ya))(
(Xb − Xa)2 + (Yb − Ya)2

) (2)

C. Obstacle Avoidance

In prior work [5] we have shown how our artificial physics
framework can be used to self-organize swarms of mobile
robots into hexagonal lattices (networks) that move towards
a goal (see Figure 2). We extended the framework to include
motion towards a goal through an obstacle field. An offline EA
evolved an agent-level force law, such that robots maintained
network cohesion, avoided the obstacles, and reached the goal.
The emergent behavior was that the collective moved as a
viscous fluid [6]. In our prior work obstacles did not obstruct
perception. The addition of obstructed perception makes the
task far more difficult, especially as obstacle size increases.

II. THE ARTIFICIAL PHYSICS FRAMEWORK

In our artificial physics (AP) framework, virtual physics
forces drive a swarm robotics system to a desired configuration
or state. The desired configuration is one that minimizes overall
system potential energy, and the system acts as a molecular
dynamics ( �F = m�a) simulation.

Fig. 2. Seven robots form a hexagon, and move towards a light source.

Each robot has position �p and velocity �v. We use a discrete-
time approximation of the continuous behavior of the robots,
with time step ∆t. At each time step, the position of each robot
undergoes a perturbation ∆�p. The perturbation depends on the
current velocity, i.e., ∆�p = �v∆t. The velocity of each robot
at each time step also changes by ∆�v. The change in velocity
is controlled by the force on the robot, i.e., ∆�v = �F∆t/m,
where m is the mass of that robot and �F is the force on that
robot. F and v denote the magnitude of vectors �F and �v. A
frictional force is included, for self-stabilization.

From the start, we wished to have our framework map
easily to physical hardware, and our model reflects this design
philosophy. Having a mass m associated with each robot allows
our simulated robots to have momentum. Robots need not
have the same mass. The frictional force allows us to model
actual friction, whether it is unavoidable or deliberate, in the
real robotic system. With full friction, the robots come to a
complete stop between sensor readings and with no friction the
robots continue to move as they sense. The time step ∆t reflects
the amount of time the robots need to perform their sensor
readings. If ∆t is small, the robots get readings often, whereas
if the time step is large, readings are obtained infrequently. We
have included a parameter Fmax, which provides a necessary
restriction on the acceleration a robot can achieve. Also a
parameter Vmax restricts the maximum velocity of the robots
(and can always be scaled appropriately with ∆t to ensure
smooth path trajectories).

In this paper we utilize a generalized Lennard-Jones (LJ)
force law (which models forces between molecules and atoms)
as the control procedure of our robots.

F = 24ε

[
2dR12

r13
− cR5

r7

]
(3)

F ≤ Fmax is the magnitude of the force between two robots
i and j, and r is the distance between the two robots. R is the
desired separation between robot i and all other neighboring
robots. The variable ε affects the strength of the force, while
c and d control the relative balance between the attractive and
repulsive components. In order to achieve optimal behavior,
the values of ε, c, d, and Fmax must be determined. Our



motivation for using the LJ force law is that (depending on
the parameter settings) it can easily model crystalline solid
formations, liquids, and even gases.

III. EXPERIMENTAL METHODOLOGY

To deal with obstacle avoidance, we have separate force
laws for robot-robot interactions, robot-goal interactions, and
robot-obstacle interactions. Hence ε, c, d, and Fmax must
be optimized for all three forms of interactions, resulting in
12 parameters. Robot-robot and robot-obstacle interactions are
local (i.e., robots can only sense nearby robots and obstacles).
The robots are trained with an offline EA, in an offline
environment. The environment is 900 × 700 with 90 randomly
positioned obstacles and each of radius 10. This yields about
5% obstacle coverage, which is typical of most studies in
this area [12]. The robots move with maximum velocity 20
units/sec. The EA does not have great difficulty producing an
optimized LJ force law that avoids obstacles while allowing all
robots to reach the goal.

However, the online environment is far more difficult. The
online 2D world is 1600 × 950, and each of the 90 obstacles
has a radius of 30 compared to the offline obstacle radius
of 10. Therefore more than 16% of the online environment
is covered with the obstacles, tripling the obstacle density.
We also increase the maximum velocity of the robots to 30
units/sec from 20 units/sec, making the robots move 1.5 times
faster than in the offline environment. Obstructed perception
occurs in both the offline and online environments.

For the online environment, each robot of the swarm contains
a slightly mutated copy of the optimized LJ force law rule set
found with offline learning. There are five goals to achieve in
a long corridor, and between each randomly positioned goal
is a different obstacle course with 90 randomly positioned
obstacles. The LJ force law learned in offline mode is not
sufficient for this more difficult environment, producing robots
that never reach the goal (due to the high percentage of
obstacles).

Robots that are left behind (due to obstacle cul-de-sacs)
do not proceed to the next goal, but robots that collide with
obstacles and make it to the goal are allowed to proceed to the
next goal. We assume that damaged robots can be repaired once
they reach a goal. Although the noise in dynamic environments
is not specifically modeled in our simulation, it has been
shown with actual robots that the Artificial Physics framework
is robust to modest amounts of noise [5]. In fact, noise can
actually improve performance by overcoming local optima in
the behavior space [8], [9].

In our prior work [3] [6], we have shown that the robots
easily learned to avoid colliding with obstacles, so our focus in
this paper is on the survivability of the robots (i.e. the number
of robots that reach a goal). When the robots are left behind
in cul-de-sacs, the number of robots that survive to reach a
goal reduces, and this causes the cohesion of the formation to
be reduced. We utilized two different methods to improve the
survivability:

• if roboti is not moving (due to an obstacle in the way)
and a neighboring robotj is moving, then roboti receives

robotj’s robot-robot interactions.
• if roboti is not moving (due to an obstacle) and roboti

has no neighbors, then roboti mutates it’s own robot-
goal interactions. This mimics “panic behavior” seen in
animals.

We focus on the first method in this paper.

IV. EXPERIMENTAL RESULTS

We compared DAEDALUS to three control studies. In the
first control study, we train the robots with an offline EA on
small obstacles, and then test them again on small obstacles
to verify their performance. In the second control study, we
train the robots with an offline EA on large obstacles and test
them on large obstacles. The purpose of this control study is
to clarify the difficulty of the task. Finally, in the third control
study, we train the robots with an offline EA on small obstacles
and test them on large obstacles. The purpose of this study was
to see how well the knowledge learned while avoiding small
obstacles transferred to large obstacles.

Figure 3 shows the results. The y-axis gives the number of
robots that survived to reach the goal at each stage for the four
different experiments. The top performance curve is for the first
control study. Note that learning with small obstacles in offline
mode is not hard, and the robots perform very well in the online
environment. This is due to the fact that the small obstacles
make the environment less dense providing the robots sufficient
space to navigate. Out of 60 initial robots released in the online
environment, 93.3% survived to reach the last goal. With such
small obstacles (which is the maximum density examined in
the related literature), obstructed perception is not an important
issue.

In our prior work [3], robots that learned without obstructed
perception on larger obstacles had a reasonably high survival
rate (78%). The bottom (dashed) performance curve shows
the effect of obstructed perception (the second control study).
Learning with large obstacles in offline mode with obstructed
perception is very difficult, and the test results show that out
of 60 robots released initially into the online environment only
35% (21 robots) survived to reach the last goal. This is due
to the fact that the environments with larger obstacles create
large numbers of cul-de-sacs that obstruct perception.

The third control study, where offline training occurs with
small obstacles and testing occurs with large obstacles, is sur-
prisingly good (see “NO DAEDALUS (small-large)”). Despite
an initial drop in performance, performance at the fifth goal is
quite acceptable (out of the initial 60 robots, 40% (24 robots)
survived to reach the final goal). This is a 5% improvement
over the robots that were trained on larger obstacles. These
results run counter to accepted wisdom, which states that it
is best to train on the hardest environments that you will
encounter. In fact, this example demonstrates that training on
simpler problems and applying the knowledge gained to harder
problems can potentially provide superior results. Why is this
so? As with developmental psychology, one does not train
children on hard problems immediately, instead, we train them
on easier problems first, in the hopes that they will learn the
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Fig. 3. Four Different Experiments of Number of Robots Surviving - All
Robots are Trained with Obstructed Perception and Tested with and without
DAEDALUS. Results averaged over 100 independent runs.

“basics” (which are important building blocks for solving other,
more difficult, problems) more quickly.

If we extend the developmental psychology analogy further,
we note that we encourage children to experiment and modify
their behavior, based on changes in the environment. Further-
more, they share the lessons learned. This is precisely what
the DAEDALUS system does. The final performance curve in
Figure 3 shows the results. With an initial 60 robots, 58.3%
or 35 robots survived to reach the last goal. This is a 23.3%
improvement over the robots that learned in an environment
with the larger obstacles, and a 18.3% improvement over
the robots that learned with small obstacles and tested with
the larger obstacles without DAEDALUS. These preliminary
results are very promising. Although encouraging the robots
(or children) to explore and experiment does provide an early
drop-off in performance (compared to the “NO DAEDALUS
(large-large)” curve), the results after four goals are superior.
This is a classic example of “exploration” vs “exploitation”.
Pure exploitation of learned knowledge is good up to a point,
but will eventually fail as the problems become more difficult.
Exploration provides the key to adapt to these changing envi-
ronments. DAEDALUS provides just this form of exploration.

A. HOMOGENEOUS DAEDALUS RESULTS

For the DAEDALUS performance curve given above, all
robots had the same mutation rate, which was 5%. Hence, each
robot had the same rate of exploration. Although the rules for
each robot may differ, their mutations rates are identical, and
we refer to this system as “Homogeneous DAEDALUS”. How-
ever, there are numerous problems with this approach. First,
the results may depend quite heavily on choosing the correct
mutation rate. How is this mutation rate to be chosen? Second,
the best mutation rate may also depend on the environment, and
should potentially change as the environment changes. How is
this to be accomplished?

Since the mutation rate may have a major effect on perfor-
mance, we decided to explore this effect by conducting several
experiments with different mutation rates. Figure 4 shows five
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Fig. 4. Five Different Mutation Experiments of Robots Surviving. - All Robots
are Trained with Obstructed Perception and Tested with DAEDALUS. Results
averaged over 100 independent runs.

independent experiments of Homogeneous DAEDALUS. Five
different mutation rates were used: 1%, 3%, 5%, 7%, and 9%.
The results are quite striking. Of the five different mutation
rates, only 5% and 7% did well (with about 35 robots surviving
to the last goal). Recall that the DAEDALUS performance
curve shown in Figure 3 resulted from an arbitrarily chosen
mutation rate of 5%. As it turns out, we were extremely
fortunate in our design decision. For example, with mutation
rates of 1%, 3%, and 9%, at most 20 robots survive to reach
the final goal. The performance curve for the 9% mutation rate
is especially interesting. Although promising at first, it appears
as if the mutation rate is so high that it eventually causes an
extremely deleterious mutation to appear. Mutation rates of 1%
and 3% are too low to cope with the changed environment.

B. HETEROGENEOUS DAEDALUS RESULTS

In an attempt to address the problem of choosing the correct
mutation rate, we divided the robots into five groups of equal
size. Each group of 12 robots was assigned a mutation rate of
1%, 3%, 5%, 7%, and 9%, respectively. This mimics the behav-
ior of children that have different “comfort zones” in their rate
of exploration. Since different robots have different mutation
rates, we refer to this system as “Heterogeneous DAEDALUS”.
Figure 5 shows the results, in comparison with the three control
studies shown in Figure 3. The label “Het.DAEDALUS(small-
large)” shows the survivability of robots with pre-assigned
mutation rates. Out of the initial 60 robots, 27 or 45% robots
survived to reach the final goal. Although this is higher than our
second and third control studies, it did not produce results as
good as the results achieved with Homogeneous DAEDALUS
using a 5% mutation rate (as shown in Figure 4). In fact, the
result at the final goal is essentially identical to the average of
the five performance curves shown in Figure 4.

C. EXTENDED HETEROGENEOUS DAEDALUS RESULTS

In an attempt to improve performance, we again borrowed
from the analogy of a “swarm” of children learning some task.
Not only do they share useful information as to the rules they



 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5

N
um

be
r 

of
 R

ob
ot

s

Goal Number

Survival of 60 Robots in Online Environment with Obstructed Perception

No DAEDALUS(small-large)

No DAEDALUS(small-small)

No DAEDALUS(large-large)

Het.DAEDALUS(small-large)
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might use, but they also share meta-information as to the level
of exploration that is actually safe! Very bold children might
encourage their more timid comrades to explore more than
they would initially. On the other hand, if a very bold child
has an accident, the rest of the children will become more
timid. In “Extended Heterogeneous DAEDALUS”, five groups
of children are again initialized with mutation rates of 1%, 3%,
5%,, 7%, and 9%. However, in this situation, if a robot receives
the rules from a neighbor (which, again, occurs if that robot
is in trouble), it also receives the neighbor’s mutation rate. In
this implementation, children in trouble not only change their
rules, but their mutation rate. Figure 6 shows the results of
this study. The curve labeled with “Ex.Het.DAEDALUS(small-
large)” refers to the survivability of robots with pre-assigned
mutation rates that also allows the robots to receive a neigh-
bor’s mutation rate, if the robot receives the neighbor’s rules.
The behavior is quite good. On average, 32 robots survive to
reach the final goal, which is very close to the optimum value of
35 found by the best Homogeneous DAEDALUS experiment.

V. SUMMARY

This paper addresses the important issue of “obstructed
perception” in learning behaviors for swarms of robots that
must avoid obstacles while reaching a goal. This issue has been
largely absent from the literature. Our obstacle density is also
three times higher than the norm, making obstacle avoidance a
far more difficult task. First, we summarize our prior work in
having swarms of robots respond to changing environments
in real time (we refer to this system as “DAEDALUS”).
Since obstructed perception makes the task far more difficult,
DEADALUS had to be extended. Our first extension was to
allow different robots to have different rates of exploration,
which affects the rate at which they change their behavioral
rules. The second extension allows robots to also share their
rates of mutation, allowing robots to find the right balance
between exploration and exploitation. Results of the extended
system are almost as good as the best results we were able to
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achieve when the exploration rates were controlled by hand. In
summary, this paper provides a framework that allows swarms
of robots to not only learn and share behavioral rules in
changing environments (in real time), but also to learn the
proper amount of behavioral exploration that is appropriate.

VI. RELATED WORK

Most of the swarm robotics literature can be subdivided
into swarm intelligence, behavior-based, rule-based, control-
theoretic and physics-based techniques. Swarm intelligence
techniques are ethologically motivated and have had excellent
success with foraging, task allocation, and division of labor
problems [15], [16]. Both behavior-based and rule-based sys-
tems [14], [13], [20] have proven quite successful in demon-
strating a variety of behaviors in a heuristic manner. Behavior-
based and rule-based techniques do not make use of potential
fields or forces. Instead, they deal directly with velocity vectors
and heuristics for changing those vectors (although the term
“potential field” is often used in the behavior-based literature,
it refers to a field that differs from the strict Newtonian physics
definition). Control-theoretic approaches have also been ap-
plied effectively (e.g., [17]). Our approach does not make the
assumption of having leaders and followers, as in [18], [19].

In the specific context of obstacle avoidance, the most
relevant papers are [13], [12] and [14]. Balch [13] examines
the situation of four robots moving in formation through an
obstacle field with 2% coverage. In [12] he extends this
to an obstacle field of 5% coverage, and also investigates
the behavior of 32 robots moving around one medium size
obstacle. Fredslund and Matarić [14] examine a maximum of
eight robots moving around two wall obstacles.

The work done in [11] uses an embedded network distributed
throughout the environment to approximate the path-planning
space and use the network to compute a navigational path using
GNATs when the environment changes. The dynamism of the
environment is modeled with an opening and closing door in



the experimental setup. However, the embedded network is
immobile, whereas our network is completely mobile.

VII. CONCLUSION AND FUTURE WORK

Future work of this research will focus on two aspects. First,
we believe that we can accelerate the learning of the mutation
rates. For example, currently, when a robot is in trouble, it
receives the rules and mutation rate of a neighbor that is not in
trouble. But this same neighbor could also query the robot in
trouble to find out its mutation rate. Then the neighbor could
spread this information further, to inform other robots that this
particular mutation rate might be problematic. Second, we will
address the issue of credit assignment, when fitness feedback is
sporadic. Current work in classifier systems uses mechanisms
such as “bucket-brigade” or “profit sharing” to allocate rewards
to individual agents appropriately [7]. However, these tech-
niques rely on global blackboards and assume that all robots
can potentially act with all others through a bidding process.
We intend to modify these approaches so that they are fully
distributed and appropriate for online systems.

Also, as suggested by the reviewers of this paper, we
will conduct studies to test the feasibility of DAEDALUS in
structured environments (i.e. connecting rooms separated with
walls).
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