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Abstract 
Our research objective is to design algorithms for autonomous mobile robots to achieve 

uniform coverage in obstacle-laden environments. This paper presents a comparative analysis of 
three algorithms to accomplish this objective: random wanderer, primary movement, and A* 
path finding. We use randomly generated simulated environments with maps to test our 
algorithms. We present our results based on performance metrics where we vary the number of 
robots and obstacle densities.  

Introduction 
 There are environments that are dangerous for humans to navigate. Natural and manmade 
disasters can leave areas strewn with hazardous debris, gas leakages, fires, and radiation. Some 
of the environments may have heavier obstacle densities than others. It is possible to use 
autonomous mobile robots to navigate these environments and perform tasks, such as search and 
rescue, while reducing the risk to human life. We are motivated to design algorithms that are 
capable of accomplishing uniform coverage for search and rescue missions.  

In this work, our objective is to investigate and provide a comparative analysis of three 
algorithms for the uniform coverage problem. The three algorithms are random wonderer (RW), 
primary movement (PM), and A* path finding (A*). In each algorithm, robots share a series of 
communal maps. These randomly generated maps are updated by sensor data received through 
the range sensors of the mobile robots. To update the map, the robots should determine which 
portions of the map have not been viewed yet and navigate a path around obstacles to those 
portions. The robots continue to navigate until 100% coverage is achieved or there are no 
acceptable movements available. 

We test our three algorithms using randomly generated simulated environments with 
maps. We have designed and implemented a user-friendly simulation for our experiments. The 
design of the simulation allows the user to specify many of the experiment parameters. We use 
percentage of the environment viewed (map coverage) and number of physical movements taken 
by the robots as our performance metrics. The second measure of the performance metrics, 
movements taken by robots, is analogous to the time spent by robots in the environment.   

Background 
Prior research in this area is numerous. Some of our work relies on prior research.   One 

of our algorithms, A*, relies heavily on the A-Star search algorithm [1]. Given a starting point 
and an ending point, the A-Star algorithm will determine a least cost path to travel from start to 
goal. The A-Star algorithm was first published in 1968 in [1], and it is modeled off of the work 
by Edsger Dijkstra described in [2]. In the specific context of uniform coverage, some of the 
relevant papers are [3], [4], and [5].  In [3], Soucy et al., described a system for automatically 
digitizing a completely unknown object to a prescribed sampling density to achieve complete 



surface coverage by analyzing sensor trajectories. Pimenta et al., in [4] addressed the problem of 
simultaneously covering an environment and tracking intruders. They translated the uniform 
coverage problem with time-varying density functions under the locational optimization 
framework. In [5], Maxim et al., presented a physics-based algorithm for uniform coverage in 
tunnels using a swarm of robots in linear formations. Majority of prior work addresses uniform 
coverage problem with 10%-15% obstacle density or no obstacles at all in the environments. We 
intend to achieve similar results with less computational complexity but in environments with 
greater obstacle density of up to 30%. Our work does not utilize swarm robotic approaches.  

Methodology 
Three Algorithms 

In our experiments we examined three algorithms, each of which we will describe below. 
Each of the three algorithms that we examined implements the same technique for determining 
the direction that a robot is facing. A robot is only capable of facing either a cardinal or an 
ordinal direction of the compass. Each direction is represented as an integer value ranging from 
zero to seven. This integer value is called the robot’s bearing. Bearing values begin with zero 
lying on the positive x-axis and is increased by one each time the angle is increased by 45 
degrees in the counter-clockwise direction. Multiplying a robot’s bearing by 45 will produce the 
angle from zero that the robot is currently facing.  

 
Figure 1: The bearing system is represented as a series of integer values ranging from 0 to 7. 
Each integer represents a 45° division of a circle. 

Random Wanderer   
 The first algorithm that we examined was the Random Wanderer (RW) algorithm. RW is 
the baseline against which we measure the efficiency of the other algorithms.  

A robot running RW has three movements that it is capable of performing: a 45 degree 
rotation left, a 45 degree rotation right, and a one cell forward movement. Before a robot 
performs a movement a random number between zero and two inclusive is generated. If the 
number generated is a zero the robot will rotate left; if the number generated is a two the robot 
will rotate right; if the number generated is a one the robot will move forward one cell if that cell 
is currently unoccupied. 
Primary Movement 

The second algorithm that we examined was the Primary Movement (PM) algorithm. PM 
is an algorithm of our own design. In PM a robot has one goal, to explore areas of the map that 



have not previously been explored. To achieve its goal, a robot has two movements that it can 
perform: moving forward one cell and rotating 45 degrees to its left. 

Before a robot performs a movement it determines if moving forward one cell will allow 
it to explore an unexplored portion of the map. If a forward movement will allow the robot to 
explore an unexplored portion of the map and the cell in front of the robot is unoccupied the 
robot will move forward one cell; otherwise, if a forward movement would cause the robot to 
explore a previously explored portion of the map or if the cell in front of the robot is occupied 
the robot will rotate 45 degrees to its left. If a robot ever rotates a full 360 degrees and is unable 
to perform any forward movement the robot will cease operation.  
A* Path Finding 

The final algorithm that we examined was the A* path finding (A*) algorithm. A* 
utilizes a modified version of A-Star which is described below.  

In A* we find the unexplored cell in the map that is closest to a particular robot, this cell 
is set as the goal of A-Star. In a standard A-Star implementation cells are evaluated until the goal 
cell has a parent assigned to it [6]. In our implementation of A-Star cells are evaluated until a cell 
has a parent and that cell is close enough to the goal cell that the goal cell would lie in a sensor’s 
field of vision. 

In order to determine the unexplored cell in the map that is closest to a particular robot, 
we devised a technique to iterate outward through a map from a given cell; we call this technique 
spiral iteration. Using the standard technique of iteration to search a map would return the 
unexplored cell closest to the starting cell, the top left corner, of the map. Using spiral iteration 
we are able to specify the starting point of iteration, the robot’s current location, and iterate 
through every cell of the map in an increasing spiral until an unexplored cell is found. The first 
cell that is found using spiral iteration will be an approximation of the closest unexplored cell to 
the robot. An example of spiral iteration can be seen in Figure 2. The green cell (light grey) 
represents the current position of the robot, the red cells (dark grey) represent valid goals, and the 
white cells represent invalid goals. In the example, standard iteration would return a valid goal in 
16 iterations but the returned goal would not be the closest goal to the robot; using spiral 
iteration would return the closest valid goal in 7 iterations. 

  
Figure 2: Standard iteration (left) vs. spiral iteration (right). The green cell represents a robot, 
the red cells represent unexplored cells, and white cells represent cells that are unoccupied and 
explored. 



Environment 
 In an effort to maintain consistency across experiments, we designed and implemented an 
application that allows us to customize experiments. The application is divided into two views, 
the parameter selection window and the simulation window. 

 
Figure 3: The panel for setting environment parameters (left) and a randomly generated map 
with panels for three algorithms (right). 

Parameter Selection Window 

 When the application is started the user is presented with the parameter selection 
window. In the parameter selection window the user is able to select the parameters that will be 
used during the current experiment. There are 7 parameters that the user can specify: robot 
quantity, sensor distance, obstacle density, environment width, environment height, random seed, 
and time limit. Robot quantity is the number of robots in the experiment. Sensor distance 
represents the distance that the robots’ sensors can reach in relation to the robot’s size. Obstacle 
density is the percentage of the environment that is occupied by obstacles. Environment width 
and height represent the quantity of cells that make up the environment along the corresponding 
axes. The random seed is an optional parameter that represents the seed value for the randomly 
generated map. Time limit is an optional parameter that represents the number of robotic 
movements an algorithm is allowed to perform before it ceases operation.  

Simulation Window 
 After the user has selected the experiment parameters they will be presented with the 
simulation window. In the simulation window, the user is presented with a tabbed panel, the 
experiment output panel, and the control panel. The output panel displays the percentage of the 
environment that has been viewed and the number of robotic movements performed by a 
particular algorithm. The control panel provides the user with buttons that allow them to control 
the current status of the application.  

 The tabbed panel presents the user with four tabs: Random Wanderer, Primary 
Movement, A* path finding, and Map. The Map tab provides a visual representation of the 
environment that each algorithm will be navigating. Black cells represent portions of the map 
that are occupied by obstacles while grey cells represent unoccupied cells in the environment. 
The Random Wanderer, Primary Movement, and A* path finding tabs each provide a visual 
representation of the environment as it has been explored by the corresponding algorithm. In an 



algorithm’s tab dark grey cells represent areas of the map that have not been explored, red cells 
represent a robot, and green cells represent a robot’s sensor.  

Experiment Setup 
We conducted four different control studies using the three algorithms where obstacle 

density of the randomly generated environment is the focus.  The obstacle density of 0%, 10%, 
20% and 30% were tested with varying number of robots of 1 to 4 for all three algorithms. The 
results of all control studies presented in this paper are averaged over 10 independent runs.  

Results 
  Table 1 through Table 4 shows the percentage of the environment covered and the 

movements taken by robots in each algorithm to achieve uniform coverage where the number of 
robots performing the task varies from 1 to 4.   

 
# of Robots 

RW PM A* 
Coverage Movements Coverage Movements Coverage Movements 

1 Robot 15.30 2760.7 34.96 468.9 100.0 2757.2 
2 Robots 14.55 1405.5 43.40 394.6 100.0 1395.2 
3 Robots 26.65 1027.2 48.24 300.8 100.0 1016.4 
4 Robots 24.49 758.3 56.92 268.8 100.0   701.4 

Table 1: Coverage achieved and Movements taken with 30% obstacle density by 1-4 robots. 

 
# of Robots 

RW PM A* 
Coverage Movements Coverage Movements Coverage Movements 

1 Robot 14.48   2235.1 45.67 583.3  100.0 2227.0  
2 Robots  20.04 1187.1 52.87 442.2  100.0 1178.4  
3 Robots 28.24 895.9 60.20 346.6 100.0   888.4 
4 Robots 26.59 726.0 71.12 303.0 100.0   716.1 

Table 2: Coverage achieved and Movements taken with 20% obstacle density by 1-4 robots. 

 
# of Robots 

RW PM A* 
Coverage Movements Coverage Movements Coverage Movements 

1 Robot  17.47 1888.9   52.21   640.7 100.0 1883.2  
2 Robots  23.51  1086.3  54.64  456.9 100.0 1081.0 
3 Robots 28.83 757.2  70.76 398.3 100.0   753.0 
4 Robots 36.82 684.9  82.82 370.8 100.0   674.3 

Table 3: Coverage achieved and Movements taken with 10% obstacle density by 1-4 robots. 

 
# of Robots 

RW PM A* 
Coverage Movements Coverage Movements Coverage Movements 

1 Robot  15.24  1622.6 100.0  1603.0 100.0  1621.0 
2 Robots  31.13    958.1  97.53    959.2 100.0    957.0 
3 Robots 37.38    753.5 100.0    566.0 100.0    749.0 
4 Robots 38.76    562.9 100.0    421.0 100.0    553.0 

Table 4: Coverage achieved and Movements taken with 0% obstacle density by 1-4 robots. 

It is obvious that A* produces superior coverage in all four control studies. The 
performance of the PM algorithm degrades with increasing obstacle density though the 



movements taken to achieve coverage remains relatively smaller and consistent.  It is evident 
that PM should be able to achieve similar coverage as A* if more robots are deployed in the 
environment. It is also possible for PM to achieve this uniform coverage with fewer movements 
than A*. As expected, the worst performance is by RW, the baseline. PM’s suboptimal 
performance can be attributed to its inability to acquire a goal outside of its sensor range while 
RW’s poor performance is caused by the random determination of movements. A* is able to 
achieve superior performance because of its ability to acquire a goal anywhere in the map and 
determine a path to its goal. 

Conclusion 
In this paper, we explored the behavior of three algorithms, random wanderer, primary 

movement, and A* path finding to accomplish uniform coverage. We presented our results with 
a comparative analysis of the three algorithms using four control studies where we varied 
obstacle density of randomly generated environments and the number of robots.  Our results 
confirm the superiority of the A* path finding algorithm. The performance of primary movement 
algorithm is promising but it requires further studies. Future work of this research will focus on 
physics based hybrid algorithms where robots adapt to switch from one control algorithm to 
another based on the environment conditions and swarm approaches as in [7].   
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