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Moving Swarm Formations through Obstacle Fields
Suranga Hettiarachchi and William M. Spears

Abstract— In prior work we established how artificial physics
can be used to self-organize swarms of mobile robots into
hexagonal formations that move toward a goal. In this paper
we extend the framework to moving formations through obstacle
fields. We provide important metrics of performance that allow
us to (a) compare the utility of different generalized force laws
in artificial physics, (b) examine trade-offs between different
metrics, and (c) provide a detailed method of comparison for
future researchers in this area.

Index Terms— artificial physics, formations, obstacle fields

I. INTRODUCTION

THE focus of our research is to build aggregate sensor sys-
tems, specifically, to design rapidly deployable, scalable,

adaptive, cost-effective, and robust swarms of autonomous
distributed mobile sensing robots. Our objective is to provide a
scientific, yet practical, approach to the design and analysis of
swarm robotic systems. Target applications for robot swarms
include tracing biological/chemical hazards to their source [1].

For such applications each robot forms a grid point for
performing computational fluid dynamics (CFD) calculations
to follow a chemical/biological plume. Hexagonal grids have
been proven to be superior to traditional rectangular grids for
numerical solutions of partial differential equations, as needed
for CFD. In particular, they are more efficient and effective at
handling boundary conditions [2].

It is assumed that robots can sense and affect nearby robots;
thus, a key challenge of this project has been how to design
“local” control rules. Not only do we want the desired global
swarm behavior to emerge from the local interaction between
robots (i.e., self-organization), but we also would like there to
be some measure of fault-tolerance i.e., the global behavior
degrades very gradually if individual robots are damaged.
Self-repair is also desirable, in the event of damage. Self-
organization, fault-tolerance, and self-repair are precisely those
principles exhibited by natural physical systems. Thus, many
answers to the problems of distributed control can be found
by studying the natural laws of physics.

In prior work we have shown how our artificial physics
framework can be used to self-organize swarms of mobile
robots into hexagonal lattices that move toward a goal [3], [4],
[5]. We now extend the framework to include motion through
an obstacle field. Our objective is two-fold. Prior research
in this area has generally focused either on a small number
of robots moving through a large number of obstacles, or a
large number of robots moving through a small number of
obstacles [6], [7]. However, the more difficult task of moving
a large number of robots in formation through a large number
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of obstacles is generally not addressed. Also, proposed metrics
of performance are not complete, ignoring criteria such as
the number of collisions between robots and obstacles, the
distribution in time of the number of robots that reach the goal,
and the connectivity of the formation as it moves. Hence, one
objective is to provide a more complete set of metrics from
which meaningful comparisons can be made. Second, we will
use these metrics, coupled with a more complete experimental
methodology, to examine (a) different strategies for performing
the task, and (b) trade-offs between different criteria.

First, we summarize the general artificial physics frame-
work. Second, we summarize our technique for optimizing
force law parameters using an evolutionary algorithm (EA).
Third, we explain our experimental methodology and perfor-
mance criteria. Fourth, we compare two different classes of
force laws using the performance criteria. We conclude with
a discussion of related work and our plans for future work.

II. THE ARTIFICIAL PHYSICS FRAMEWORK

In our artificial physics (AP) framework, virtual physics
forces drive a swarm robotics system to a desired configuration
or state. The desired configuration is one that minimizes
overall system potential energy, and the system acts as a
molecular dynamics (

������ �� ) simulation.
Each robot has position

�� and velocity
�� . We use a discrete-

time approximation to the continuous behavior of the robots,
with time-step 	�
 . At each time step, the position of each robot
undergoes a perturbation 	 �� . The perturbation depends on the
current velocity, i.e., 	 �� � �� 	�
 . The velocity of each robot
at each time step also changes by 	 �� . The change in velocity
is controlled by the force on the robot, i.e., 	 �� � �� 	�
� � ,
where

�
is the mass of that robot and

��
is the force on that

robot.
�

and � denote the magnitude of vectors
��

and
�� . A

frictional force is included, for self-stabilization.
From the start, we intended to have our framework map

easily to physical hardware, and our model reflects this
design philosophy. Having a mass

�
associated with each

robot allows our simulated robots to have momentum. The
frictional force allows us to model actual friction, whether it
is unavoidable or deliberate, in the real robotic system. With
full friction, the robots come to a complete stop between
sensor readings and with no friction the robots continue to
move as they sense. The time step 	�
 reflects the amount of
time the robots need to perform their sensor readings. If 	�

is small, the robots get readings very often, whereas if the
time step is large, readings are obtained infrequently. We have
also included a parameter

�������
, which provides a necessary

restriction on the acceleration a robot can achieve. Also, a
parameter � ����� restricts the maximum velocity of the robots
(and can always be scaled appropriately with 	�
 to ensure
smooth path trajectories).
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III. HEXAGONAL LATTICE SENSING GRIDS

In prior work we have shown how AP can be applied to self-
organize swarms of robots into hexagonal lattices [3], while
they move toward a goal [4], [5]. In order to accomplish this,
robots must be able to sense the range and bearing to nearby
robots, as well as the goal location (Figure 1). All movement
is controlled via the

�� � � �� control law.

Fig. 1. Seven robots form a hexagon, and move towards a light source.

In this paper we compare two different force laws, in the
context of moving formations through obstacle fields. The first
has been used in our prior work and is a generalization of the
“Newtonian gravitational” force law to include both attraction
and repulsion. The force law is:

��� ���� (1)
��� � �����

is the magnitude of the force between two
robots, and � is the distance between the two robots. The
variable

�
affects the strength of the force. The variable �

is a user-defined power that controls the reduction in strength
with distance. The force is repulsive if ���
	 and attractive
if ���	 . 	 is the desired separation between that robot and
neighboring robots. In order to achieve optimal behavior, the
values of

�
, � , and

�������
must be determined, as well as the

amount of friction. The Newtonian force law generally creates
rigid formations that act as solids, even in the presence of
sensor and locomotion uncertainty (Figure 1).

In this paper we are also investigating the utility of a second
force law, which is a generalization of the Lennard-Jones force
law (which models forces between molecules and atoms):

� ��������� ��� 	����� ����� � 	"!��#%$ (2)

Again,
�&� � �����

is the magnitude of the force between
two robots, and � is the distance between the two robots.
The variable

�
affects the strength of the force, while �and

�
control the relative balance between the attractive and

repulsive components. In order to achieve optimal behavior,
the values of

�
, � , � , and

�������
must be determined, as well

as the amount of friction. Our motivation for trying the LJ
force law is that (depending on the parameter settings) it can
easily model crystalline solid formations, liquids, and gases.

IV. OPTIMIZATION USING EVOLUTIONARY ALGORITHMS

Given generalized force laws, such as the Newtonian force
law or Lennard-Jones (LJ), it is necessary to optimize the
parameters to achieve the best performance. We achieve this
task using an EA. EAs are optimization algorithms inspired by
natural evolution. We mutate and recombine a population of
candidate solutions (individuals) based on their performance
in our environment. One of the major reasons for using
this population-based stochastic algorithm is that it quickly
generates individuals that have robust performance. Every in-
dividual in the population is a vector of real-valued parameters,
representing an instantiation of either the Newtonian or LJ
force law (depending on the force law being optimized).

In addition to friction, the evolving parameters of the
Newtonian force law are:' � - gravitational constant of robot-robot interactions,' � - power of the force law for robot-robot interactions,' � ����� - maximum force of robot-robot interactions,

and similar 3-tuples for obstacle/goal-robot interactions. The
evolving parameters of the LJ force law are:' � - strength of the robot-robot interactions,' � - non-negative attractive robot-robot parameter,' � - non-negative repulsive robot-robot parameter,' � ����� - maximum force of robot-robot interactions,

and similar 4-tuples for obstacle/goal-robot interactions.
Offspring are generated using one-point crossover with a

crossover rate of (*)�+ . Mutation adds/subtracts an amount
drawn from a ,.-/)1032�4 Gaussian distribution. Each parameter
has a 5 �6 probability of being mutated. Mutation ensures that
parameter values stay within accepted ranges.

Since we are using an EA that minimizes, the performance
of an individual is measured as a weighted sum of penalties:798 ��: �<; � 7>=@?�ABADCFEGCF?�HJI.; � 7>KL?�=>?3MON�E�CP?3H�IQ; � 7@KL?�RTSUN �WV MYX@? � A

The weighted fitness function consists of three components:
a penalty for collisions, a penalty for lack of cohesion, and a
penalty for robots not reaching the goal. Since there is no
safety zone around the obstacles [7], a penalty is added to
the score if the robots collide with obstacles. The cohesion
penalty is derived from the fact that in a good hexagonal
lattice, interior robots should have six local neighbors. A
penalty occurs if a robot has more or less neighbors. If no
robot reaches the goal within the time limit, a penalty occurs.

V. EXPERIMENTAL METHODOLOGY

A. The Environment

Our 2D simulation world is 900x700, and contains a goal,
obstacles and robots. Up to a maximum of 100 robots and
100 static obstacles with one static goal are placed in the
environment. The goal is always placed at a random position
in the right side of the world, while the robots are initialized
in the bottom left area. The obstacles are randomly distributed
throughout the environment, but are kept 50 units away from
the initial location of the robots, to give the robots the
opportunity to first get into formation. Each circular obstacle
has a radius 	 ? of 10, and the square shaped goal is 20x20.
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When 100 obstacles are placed in the environment, roughly
5% of the environment is covered by the obstacles (similar
to [7]). The desired separation between robots 	 is 50, and
the maximum velocity � ����� is 20. Figure 2 shows 40 robots
navigating through randomly positioned obstacles. The larger
circles are obstacles and the square to the right is the goal.
Robots can sense other robots within a distance of 5�� � 	 , and
can sense obstacles within a distance of 	 ? I 5 (the minimum
sensing distance). The goal can be sensed at any distance.

Fig. 2. 40 robots moving to the goal. The larger circles represent obstacles,
while the square in the upper right represents the goal.

The simulation tool consists of training and performance
modules. The training module is used to evolve parameter sets
for either the Newtonian or the LJ force laws. The performance
module evaluates the optimized force laws with respect to the
following metrics: collisions, connectivity, reachability, and
time to goal (to be explained later).

B. EA Optimization

Both Newtonian and LJ force laws were evolved using our
training module. The population size was 100 and the EA was
run for 100 generations. We first trained over scenarios with
15 robots and 50 obstacles. Each individual (an instance of
the force law) was evaluated for 1500 time steps, averaged
over 50 random instantiations of the environment. However,
the resulting optimized force laws did not scale well to higher
numbers of robots and/or obstacles. Training with 100 robots
and 100 obstacles was time prohibitive, since the simulation
runs in time � -/, � 4 , where , is the total number of robots
and obstacles.1 As a consequence, we settled on a compromise
of 40 robots and 90 obstacles.

C. Performance Metrics

After optimization, the best force laws are evaluated with
our performance module. The performance module consists of
four metrics:' Collisions: the number of robots colliding with obstacles.

We consider such robots to be damaged, but they can still
move with the formation.

1The simulation compares all pairs of robots to see who they interact with.
With the actual robots this occurs in O(1) time.

' Swarm connectivity: the maximum number of robots in
the swarm that are connected via a communication path.
Two robots are connected if their separation is

�
1.5R.' Reachability: the percentage of robots that reach the goal.

A robot has reached the goal if it is within
� 	 distance

of the goal.' Time to goal: the amount of time taken by the last robot
to reach the goal.

The importance of the collision, connectivity, and time to
goal metrics is obvious. We also consider connectivity, since
this is an important metric for the quality of a swarm of
robots acting as a sensor grid. The connectivity result we
will provide is the minimum size of the largest connected
swarm, as the swarm moves to the goal. Although each metric
provides useful information, a more complete picture arises by
considering all.

VI. RESULTS

To measure the performance of the optimized force laws,
experiments were carried out with 20 to 100 robots (in
increments of 20), and 20 to 100 obstacles (in increments of
20). Each experiment was averaged over 50 runs of different
robot, goal and obstacle placements. We first consider the
results for the Newtonian force law.

A. Newtonian Force Law

Tables I – IV show the number of collisions, connectivity,
reachability, and time to goal results for the optimized New-
tonian force law. A ‘–’ entry indicates that the robots did not
make it to the goal within the allotted time period.

Obstacles
robots 20 40 60 80 100

20 0 0 0 0 0
40 0 0 0 0 0
60 0 0 0 0 0
80 0 1 0 0 1

100 2 2 2 2 3

TABLE I

NUMBER OF ROBOTS THAT COLLIDED WITH OBSTACLES

Obstacles
robots 20 40 60 80 100

20 3 3 3 4 5
40 16 15 18 14 21
60 60 60 60 60 60
80 80 80 80 80 80

100 100 100 100 100 100

TABLE II

MINIMUM NUMBER OF ROBOTS THAT REMAIN CONNECTED

It is clear that collisions are not a primary concern. Inter-
estingly, the number of obstacles does not appear to be the
important factor here, although the number of robots is.

When there are less than 40 robots, some reach the goal.
The time to reach the goal increases as the number of
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Obstacles
robots 20 40 60 80 100

20 100 � 100 � 100 � 100 � 100 �
40 83 � 77 � 63 � 49 � 37 �
60 0 � 0 � 0 � 0 � 0 �
80 0 � 0 � 0 � 0 � 0 �

100 0 � 0 � 0 � 0 � 0 �
TABLE III

PERCENTAGE OF ROBOTS REACHING THE GOAL

Obstacles
robots 20 40 60 80 100

20 1180 1190 1410 1490 1490
40 1500 1500 1500 1500 1500
60 – – – – –
80 – – – – –

100 – – – – –

TABLE IV

TIME TO REACH THE GOAL

obstacles increases. However, it is clear that this is achieved by
fragmenting the formation into small parts (Table II). When
there are more than 40 robots, none reach the goal (within
the time period). Instead, the structure remains connected, but
the strict rigidity of the structure prevents it from making good
progress through the obstacle field. It is clear from these results
that training with 40 robots does not yield a Newtonian force
law that scales to a larger number of robots.

B. LJ Force Law

Tables V – VIII show the collision, connectivity, reachabil-
ity, and time to goal results for the optimized LJ force law.

Obstacles
robots 20 40 60 80 100

20 0 0 0 0 0
40 0 0 0 0 0
60 0 0 0 0 0
80 0 0 0 1 1
100 1 1 2 4 5

TABLE V

NUMBER OF ROBOTS THAT COLLIDED WITH OBSTACLES

Obstacles
robots 20 40 60 80 100

20 8 8 8 8 8
40 20 20 20 21 21
60 34 34 34 35 35
80 49 49 49 49 49
100 64 64 64 64 64

TABLE VI

MINIMUM NUMBER OF ROBOTS THAT REMAIN CONNECTED

Again, it is clear that collisions are not a primary concern.
As before, the number of obstacles does not appear to be the
important factor here, although the number of robots is. The

Obstacles
robots 20 40 60 80 100

20 100 � 100 � 100 � 100 � 100 �
40 100 � 100 � 100 � 100 � 100 �
60 100 � 100 � 100 � 100 � 100 �
80 100 � 100 � 100 � 100 � 100 �
100 100 � 100 � 100 � 100 � 100 �

TABLE VII

PERCENTAGE OF ROBOTS REACHING THE GOAL

Obstacles
robots 20 40 60 80 100

20 510 520 520 520 530
40 590 600 620 590 600
60 680 680 700 690 690
80 780 790 780 780 780

100 870 870 870 830 870

TABLE VIII

TIME TO REACH THE GOAL

differences in collision results between LJ and the Newtonian
force law are statistically insignificant.

However, the other results are quite different. First, all of
the robots make it to the goal, in all circumstances. The time
to reach the goal increases slowly as the number of obstacles
and robots increases (with the number of robots having a larger
effect). Finally, swarm connectivity remains reasonably high,
ranging from 40% to 64%. Interestingly, swarm connectivity
increases as the number of robots increases, and is almost
totally unaffected by the number of obstacles. In contrast with
the Newtonian force law, the LJ force law (which is trained
with 40 robots) scales well with larger numbers of robots. This
provides evidence that the LJ force law is a good model for
the swarm behavior that we desire.

Observation of the system behavior shows that the formation
acts like a viscous fluid, rather than a solid. Although the
formation is not rigid, it does tend to retain much of the
hexagonal structure. Deformations and rotations of portions
of the fluid are temporary manifestations imposed by the
obstacles. Hence, the added flexibility of this formation (over
that achieved by the Newtonian force law) has a significant
impact on behavior. The optimized LJ force law provides
low collision rates, very high goal reachability rates within
a reasonable period of time, and high swarm connectivity.

VII. RESULTS WITH A SAFETY ZONE

The force laws evolved with the EA produce behavior where
the robots skirt the obstacles as closely as possible. This is
consistent with the general AP framework, where robots move
in a fashion that minimize energy usage. However, as noted
above, this can lead to collisions. In this section we examine
the trade-offs induced by the addition of a safety zone.

We performed the same experiments as before, for 20 and
100 robots with varying number of obstacles. All obstacles
were given a safety zone of size 15, increasing the virtual size
of the obstacles. Hence, robots can sense obstacles within a
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distance of 	 ? I 5 � . Again, the robots were allowed 1500 time
units to reach the goal.

A. Newtonian Force Law

The introduction of the safety zone eliminated all collisions
of robots with obstacles, and swarm connectivity results were
similar. However, reachability was greatly reduced and the
time to reach the goal was increased (Tables IX and X).

Obstacles
robots 20 40 60 80 100

20 99 � 96 � 70 � 52 � 14 �
100 0 � 0 � 0 � 0 � 0 �

TABLE IX

PERCENTAGE OF ROBOTS REACHING THE GOAL

Obstacles
robots 20 40 60 80 100

20 1440 1490 1490 1490 1490
100 – – – – –

TABLE X

TIME TO REACH THE GOAL

The results were not unexpected. Since the Newtonian force
law produces a structure that acts like a solid, the addition of
the safety zone make it more difficult for the formation to
rotate and counter-rotate (an emergent property of the system)
through the obstacles.

B. LJ Force Law

As with the Newtonian force law, the introduction of the
safety zone eliminated all collisions of LJ-controlled robots
with obstacles, and swarm connectivity results were similar.

Obstacles
robots 20 40 60 80 100

20 100 � 100 � 100 � 87 � 80 �
100 100 � 99 � 98 � 96 � 93 �

TABLE XI

PERCENTAGE OF ROBOTS REACHING THE GOAL

Obstacles
robots 20 40 60 80 100

20 520 520 520 550 580
100 810 890 810 890 990

TABLE XII

TIME TO REACH THE GOAL

Once again, reachability was reduced and the time to reach
the goal increased. However, the reduction in performance
(see Tables XI and XII) is not nearly as severe as with the
Newtonian-controlled robots. The additional flexibility of the
viscous fluid works far better.

VIII. DISCUSSION AND ELABORATION

To further analyze our system, we also collected data
concerning the change in the connectivity and the percentage
of robots reaching the goal, over time. The resulting graphs are
far too numerous to present here, but we present representative
examples. All graphs are averaged over 50 independent runs.
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Fig. 3. Change in connectivity over 1500 time steps for 20 and 100 robots
through 100 obstacles using Newtonian ��������� and LJ force laws

Figure 3 illustrates the change in connectivity of the swarm
over time. Two sets of results are presented in this graph.
The curves at the top are for 100 robots moving through
100 obstacles. The robots controlled by the Newtonian force
law remain fully connected (although, as we know from the
prior results, this is because the formation has not succeeded
in reaching the goal). However, the swarm connectivity for
the LJ-controlled robots drops after 200 time steps, as the
formation begins to move through the obstacle field. After 400
time steps, the formation connectivity increases as the robots
reach the goal.

The curves at the bottom are for 20 robots moving through
100 obstacles. In this situation the Newtonian-controlled
robots arrive at the goal, and the swarm connectivity drops
after 800 time steps and then increases after roughly 1050
steps. Because the LJ-controlled formation moves much more
quickly, the formation connectivity drops after 200 time steps
and then increases after roughly 300 steps. It is interesting to
note that the LJ-controlled swarm does not break apart quite
as much as the Newtonian-controlled swarm.
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Fig. 4. Percentage of 20 and 100 robots reaching goal through 100 obstacles
over 1500 time steps using Newtonian ��������� and LJ force laws

Figure 4 shows how the number of robots reaching the goal
changes with time. Again, two sets of results are presented,
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for 20 and 100 robots moving through 100 obstacles. The two
left-most curves are for the LJ-controlled robots. Note that,
regardless of the number of obstacles, robots start to arrive
at the goal at roughly the same time (300 time steps). With
20 robots, they have all arrived at the goal by about 500 time
steps. This indicates that all robots arrived at the goal within
a 200 time step interval – a relatively narrow band in time.
Increasing the number of robots to 100 increases the time
interval to only 500 steps.

The other two curves are for the Newtonian-controlled
robots. With 20 robots, they start to reach the goal at 1000
time steps, and the interval is approximately 400 time steps.
When there are 100 robots, none reach the goal within the
allotted time period.
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Fig. 5. Percentage of 20 and 100 robots reaching goal through 100 obstacles
over 1500 time steps using Newtonian � � � ��� and LJ force laws with a safety
zone around obstacles

Figure 5 shows the results of the same experiment, but with
the addition of the safety zones around all obstacles. As noted
earlier, safety zones remove all collisions. But the impact on
reachability is clear. Even with only 20 robots, performance
with the Newtonian force law is severely impacted. Perfor-
mance of the LJ-controlled robots is also impacted, but to
a lesser extent. The time interval within which robots arrive
at the goal remains relatively unaffected, but the number of
robots reaching the goal is definitely compromised.

Figure 6 shows the evolved LJ robot-robot force law. It is
strongly repulsive when the distance between robots is less
than 50, and weakly attractive when the distance is greater
than 50. This weak attractive force provides the “stickiness”
that manifests itself as a viscous fluid in the aggregate.
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Fig. 6. The evolved LJ force law, which is repulsive when distance is less
than 50, and weakly attractive when distance is greater than 50

IX. RELATED WORK

Most of the swarm robotics literature can be subdivided
into swarm intelligence, behavior-based, rule-based, control-
theoretic and physics-based techniques. Swarm intelligence
techniques are ethologically motivated and have had excellent
success with foraging, task allocation, and division of labor
problems [8], [9]. Both behavior-based and rule-based systems
[10], [6], [11] have proved quite successful in demonstrating
a variety of behaviors in a heuristic manner. Behavior-based
and rule-based techniques do not make use of potential fields
or forces. Instead, they deal directly with velocity vectors
and heuristics for changing those vectors (although the term
“potential field” is often used in the behavior-based literature,
it refers to a field that differs from the strict Newtonian
physics definition). Control-theoretic approaches have also
been applied effectively (e.g., [12]). Our approach does not
make the assumption of having leaders and followers, as in
[13], [14].

One of the earliest physics-based techniques is the potential
fields (PF) approach (e.g., [15]). Most of the PF literature
deals with a small number of robots (typically just one)
that navigate through a field of obstacles to get to a target
location. The environment, rather than the robots, exert forces.
Obstacles exert repulsive forces while goals exert attractive
forces. Recently, Howard et al. [16] and Vail and Veloso
[17] extended PF to include inter-agent repulsive forces –
for the purpose of achieving coverage. Although this work
was developed independently of AP, it affirms the feasibility
of a physics force-based approach. Another physics-based
method is the “Engineered Collective” work by Duncan at the
University of New Mexico and Robinett at Sandia National
Laboratory. Their technique has been applied to search-and-
rescue and other related tasks [18]. The social potential fields
[19] framework is highly related to AP. Reif and Wang
[19] rely on a force-law simulation that is similar to our
own, allowing different forces between different robots. Their
emphasis is on synthesizing desired formations by designing
graphs that have a unique PE embedding. We plan to merge
this approach with ours.

In the specific context of obstacle avoidance, the most
relevant papers are [6], [7] and [10]. Balch [6] examines
the situation of four robots moving in formation through
an obstacle field with 2% coverage. In [7] he extends this
to an obstacle field of 5% coverage, and also investigates
the behavior of 32 robots moving around one medium size
obstacle. Fredslund and Matarić [10] examine a maximum of
eight robots moving around two wall obstacles. To the best of
our knowledge, this paper is the first to systematically examine
larger numbers of robots and obstacles.

X. SUMMARY

This paper presents a novel extension to our artificial
physics framework, with the use of a generalized Lennard-
Jones force law. We then summarize how we use evolutionary
algorithms to optimize the parameters of the force laws. These
force laws were tested within the context of moving robotic
swarm formations through obstacle fields to a goal.
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In addition, this paper presents novel metrics of perfor-
mance, namely, the number of robots that collide with ob-
stacles, their connectivity, the number of robots that reach the
goal, and the time to the goal. Although each metric provides
useful information, a much better picture arises by considering
all metrics. Our empirical analysis is methodical, ranging from
20 to 100 robots, and 20 to 100 obstacles.

Our results indicate that LJ-controlled robots have far supe-
rior performance to our more “classic” Newtonian-controlled
robots. This is because the emergent behavior of the LJ-
controlled swarm is to act as a viscous fluid, generally re-
taining good connectivity while allowing for the deformations
necessary to smoothly flow through the obstacle field. Despite
being trained with only 40 robots, the emergent behavior scales
well to larger numbers of robots. In contrast, the Newtonian-
controlled swarm produces more rigid structures that have
much more difficulty maneuvering through the obstacles.
Furthermore, performance drops dramatically when there are
more than 40 robots. Table XIII summarizes the results.

Newtonian LJ
Robots 40 60 80 100 40 60 80 100
Collisions 0 0 1 3 0 0 1 5
Connectivity 21 60 80 100 21 35 49 64
Reachability% 37 0 0 0 100 100 100 100
Time to Goal 1500 - - - 600 690 780 870

TABLE XIII

SUMMARY OF RESULTS FOR 100 OBSTACLES, WITH 40 – 100 ROBOTS.

Finally, we use the metrics to consider the trade-offs that
occur when a safety zone is introduced around the obstacles.
As expected, collisions never occur, but significant reductions
in reachability arise. For future work we intend to extend our
framework to non-circular and/or moving obstacles. At this
point, significant issues arise with respect to the partial obser-
vation of obstacles and the presence of traps. We expect to
be able to merge methods from Lee et.al. [20] with respect to
their handling of partial observations, and the “wall following
method” from Borenstein and Koren [21] for avoiding traps.
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