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Abstract: The ability for a swarm of mobile agents to quickly adapt in unknown environments and reach a goal while

avoiding obstacles and maintaining a formation is extremely important in time critical tasks. We utilize a physics-based

autonomous agent framework combined with our DAEDALUS paradigm which allows the agents to learn from the neigh-

boring agents. In traditional approaches, a swarm of agents learn the task in simulation(offline) combined with an evolu-

tionary/genetic algorithm, and a global observer optimizes the swarm performance. In real world(online), the swarm of

agents may have to rapidly adapt in unfamiliar environments. When there is no global observer and the online(real world)

environment is dense with obstacles compared to offline environment, the performance feedback may be delayed or per-

turbed by noise, and the rules learned in simulation(offline) may not be sufficient to overcome the navigational difficulties,

leaving the swarm to rapidly adapt in new environment. DAEDALUS is a paradigm designed to address these issues, by

mimicking more closely the actual dynamics of populations of agents moving and interacting in a task environment. This

paper presents an analysis of swarm adaptation using DAEDALUS in high obstacle density environments where agent

interactions could be obstructed by obstacles.
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1. INTRODUCTION

Swarm engineering is difficult due to numerous con-

straints, such as noise, limited range of interaction with

other agents, delayed feedback, and the distributed au-

tonomy of the agents. One potential solution is to au-

tomate the design of multi-agent systems in simulation,

using evolutionary algorithms (EAs) [8], [17]. In this

paradigm, an EA evolves the behaviors of the agents (and

their local interactions), such that the global task behavior

emerges. A global observer monitors the swarm and pro-

vides a measure of performance to the individual agents.

Agent behaviors that lead to desirable global behavior

are hence rewarded, and the swarm system is gradually

evolved to provide the optimal global performance.

There are several difficulties with the above evolution-

ary approach. First, a global observer may not exist.

Second, some (but not all) agents may experience some

form of reward for achieving task behavior, while oth-

ers do not. Third, this reward may be delayed, or may

be noisy. Fourth, the above paradigm works well in sim-

ulation(offline) but is not feasible for real-world(online)

applications where unexpected events occur. Finally, the

above paradigm may have difficulty evolving different in-

dividual behaviors for different agents (heterogeneity vs

homogeneity).

In our prior work [10], we introduced “Distributed

Agent Evolution with Dynamic Adaptation to Local Un-

expected Scenarios”(DAEDALUS), as a paradigm for en-

gineering multi-agent systems that can be used either of-

fline or online and showed how DAEDALUS can be used

to achieve global aggregate behavior of agents that move

through an obstacle field towards a goal, where obstacles

obstruct the perception of the agents (i.e. they act to de-

grade the interactions between agents).

This paper explores the performance of DAEDALUS

in high obstacle density environments when the gents are

only capable of observing the environment partially due

to sensor obstruction. We define partial observability or

obstructed perception as when an agent’s line of sight

to another agent is obstructed by an obstacle. We use

“swarm survival” (i.e. the amount of agents reaching

a goal within a predefined time interval) as our perfor-

mance metric. We present a detail analysis showing how

DAEDALUS can be used to improve swarm survival in

online, partially observable, high obstacle density envi-

ronments.

2. DAEDALUS PARADIGM

The DAEDALUS paradigm assumes that agents

(whether software or hardware) move throughout some

environment. As they move, they interact with other

agents. These agents may be of the same species or of

some other species [15]. Agents of different species have

different roles in the environment. The goal is to evolve

agent behaviors and interactions between agents, in a dis-

tributed fashion, such that the desired global behavior oc-

curs. Let us further assume that each agent has some pro-

cedure to control its own actions in response to environ-

mental conditions and interactions with other agents. The

precise implementation of these procedures is not rele-



vant, thus they may be programs, rule sets, finite state

machines, real-valued vectors, force laws, or any other

procedural representation. Agents have a sense of self-

worth or “fitness”.

Each agent of the swarm is an individual in a popu-

lation that interacts with its neighbors. Each agent con-

tains a slightly mutated copy of the optimized control pro-

cedure found with offline learning with an offline EA.

This ensures that our agents are not completely homo-

geneous. We allowed this slight heterogeneity because

when the environment changes, some mutations perform

better than others. The agents that perform well in the

environment will have higher fitness than the agents that

perform poorly. When low fitness agents encounter high

fitness agents, the low fitness agents ask for the high fit-

ness agent’s rules. Hence, better performing agents share

their knowledge with their poorer performing neighbors.

To ensure the capability of adapting to further changes

in the environment, agents also occasionally mutate their

own rules, according to a predefined mutation rate at-

tached to that agent.

3. THE ARTIFICIAL PHYSICS
FRAMEWORK

In our physics-based(AP) framework, virtual physics

forces drive a swarm of agents to a desired configuration

or state. The desired configuration is one that minimizes

overall system potential energy, and the system acts as a

molecular dynamics ( ~F = m~a) simulation.

Each agent has position ~p and velocity ~v. We use a

discrete-time approximation of the continuous behavior

of the agents, with time step ∆t. At each time step, the

position of each agent undergoes a perturbation ∆~p. The

perturbation depends on the current velocity, i.e., ∆~p =
~v∆t. The velocity of each agent at each time step also

changes by ∆~v. The change in velocity is controlled by

the force on the agent, i.e., ∆~v = ~F∆t/m, where m is

the mass of that agent and ~F is the force on that agent.

F and v denote the magnitude of vectors ~F and ~v. A

frictional force is included, for self-stabilization.

The time step ∆t reflects the amount of time the agents

need to perform their sensor readings. If ∆t is small,

the agents get readings often, whereas if the time step

is large, readings are obtained infrequently. We have in-

cluded a parameter Fmax, which provides a necessary re-

striction on the acceleration a agent can achieve. Also

a parameter Vmax restricts the maximum velocity of the

agents (and can always be scaled appropriately with ∆t
to ensure smooth path trajectories).

We utilize a generalized Lennard-Jones(LJ) force law

as the control procedure of our agents. The LJ poten-

tial function models two distinct forces between neutral

molecules and atoms. The forces are based on the dis-

tances between the molecules; at long ranges the attrac-

tive force makes the molecules move closer and at short

ranges the repulsive force makes the molecules move

apart, causing the molecules to maintain a natural bal-

ance. We derive the force function (i.e. negated deriva-

tive of the potential function) for interaction between two

agents as:

Fi,j = 24ǫ

[

2dσ12

r13
−

cσ6

r7

]

(1)

Fi,j ≤ Fmax is the magnitude of the force between

two agents i and j, and r is the distance between the two

agents. σ is the desired separation between agent i and

agent j (i.e. all other neighboring agents). The variable

ǫ affects the strength of the force, while c and d control

the relative balance between the attractive and repulsive

components. In order to achieve optimal behavior, the

values of ǫ, c, d, and Fmax must be determined. Our

motivation for using the LJ force law is that (depending

on the parameter settings) it can easily model crystalline

solid formations, liquids, and even gases.

4. EXPERIMENTAL SETUP

In the offline environment, an EA is trained using 40

agents with 5% obstacle density and maximum velocity

of 20 units/time steps in an 900 × 700 2D world. The

circular obstacles and the goal are randomly positioned

in the world.

We utilize separate force laws for agent-agent interac-

tions, agent-goal interactions, and agent-obstacle interac-

tions to achieve the best performance of the EA. Hence ǫ,

c, d, and Fmax of the LJ force law must be optimized

offline for all three forms of interactions, resulting in

12 parameters. The EA generates offspring using one-

point crossover with a crossover rate of 60%. Mutation

adds/subtracts an amount drawn from a N(0, δ) Gaussian

distribution. Each parameter has a 1/L probability of be-

ing mutated, where L is the length of the individual. Mu-

tation ensures that parameter values stay within accepted

ranges.

Since we are using an EA that minimizes, the offline

performance of an individual is measured as a weighted

sum of penalties:

w1PCollision + w2PNoCohesion + w3PNotReachGoal

The weighted multi-objective fitness function consists

of three criteria: collision avoidance, maintaining cohe-

sion, and reaching the goal within a time limit (measure-

ment of survival).

The agents in offline environment do not make use

of DAEDALUS paradigm and the obstructed perception

does not occur in EA learning. The EA optimized(offline)

rule sets of LJ force law is slightly mutated again with the

amounts drawn from a N(0, δ) Gaussian distribution and

used in the online environment. All units are in pixels.



In the online environment, There are five goals to

achieve in a long corridor where each segment (from

one goal to next goal) of the corridor is an 900 × 700

2D world, and between each randomly positioned goal is

an obstacle course where obstacles are once again posi-

tioned randomly. We vary the radius of circular obstacles

to attain different obstacle densities in different control

studies while keeping the number of obstacles constant.

We also increase the maximum velocity of the agents to

30 units/time step from 20 units/time step used in offline

world, making the agents move 1.5 times faster in online

world.

The 40 agents initially start their navigation from the

bottom left corner of the rectangular world and navigates

towards a goal at an end of a corridor segment. The

agents that do not reach a goal within a 2000 time steps

do not proceed to the next goal. Some agents may get

stuck behind cul-de-sacs formed by obstacles due to high

density and may not reach a goal.

5. RESULTS AND ANALYSIS

The results consists of four separate experiments: the

first experiment (Table 1) shows the number of agents

survived to reach a goal without DAEDALUS and with-

out obstructed perception, the second experiment (Ta-

ble 2) shows the number of agents survived to reach a

goal without DAEDALUS and with obstructed percep-

tion, the third experiment (Table 3) shows the number of

agents survived to reach a goal with DAEDALUS and

with obstructed perception, and the fourth experiment

(Table 4) shows the number of agents survived to reach

a goal with DAEDALUS and without obstructed percep-

tion. Each experiment consists of several control studies

where each control study is conducted with a different

obstacle density. All control studies show the number of

agents survive to reach a goal with the obstacle density of

the environment. All results are averaged over 50 inde-

pendent runs.

Table 1 : The number of agents survived to reach a goal

without DAEDALUS and without obstructed perception.

Goal Number

Density Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

5% 39 38 37 37 36

10% 38 37 34 31 30

15% 35 33 28 22 21

20% 32 27 20 15 13

25% 31 20 13 10 7

30% 22 10 6 3 0

The results in the Table 1 (experiment 1) shows

the number of agents survive to reach a goal without

DAEDALUS and without obstructed perception in the

online environment. Out of 40 agents 36 agents or 90% of

the agents survive to reach the last goal when the obstacle

density is 5%. The agents do not have a significant dif-

ficulty performing in this environment since this is simi-

lar to the offline behavior learned using EA. Though not

significant, the 10% (4 agents) decrease in survival can

mainly be attributed to the difference in online(corridor

with five segments) vs offline obstacle course. When the

obstacle density is 15%, 52% or 21 of the agents reach the

final goal. None of the agents survive to reach the final

goal when the obstacle density is 30%, where the density

is six times higher than the offline environment.

In our second experiment, we introduced obstructed

perception to agent-agent interactions. When an agent

can not sense another agent, due to the presence of obsta-

cles, we call this the “obstructed perception.” When the

agent’s line of sight lies along an edge of an obstacle, the

agents are capable of sensing each other. The results are

shown in the Table 2 .

Table 2 : The number of agents survived to reach a goal

without DAEDALUS and with obstructed perception.

Goal Number

Density Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

5% 38 38 38 36 36

10% 37 36 35 31 29

15% 32 32 27 13 12

20% 27 26 22 5 5

25% 13 11 8 2 0

The results in the Table 2 shows the number of agents

survive to reach a goal without DAEDALUS and with ob-

structed perception in the online environment. Out of 40

agents 36 agents or 90% of the agents survive to reach the

last goal when the obstacle density is 5%. The number of

agents reaching the goal in this control study is very simi-

lar to the first control study in the first experiment. When

the obstacle density is 15%, only 30% or 12 of the agents

reach the final goal, and this is a 22% (9 agents) decrease

in agent survival compared to the same control study in

the first experiment. These differences in agent survival

show that the obstructed perception has a major effect

on swarm adaptation in online environment, and requires

DAEDALUS like paradigm to overcome the navigational

difficulties. No agents survive to reach the last goal when

the obstacle density is 25%.

We apply our DAEDALUS paradigm to further im-

prove swarm survival. The results of the third experiment

presented in the Table 3 shows the number of agents

survived to reach a goal with DAEDALUS and with ob-

structed perception.

In the first control study, out of 40 agents 36 agents or

90% of the agents survive to reach the last goal when the

obstacle density is 5%. Again, the agents do not have a

significant difficulty performing in this environment. For



Table 3 : The number of agents survived to reach a goal

with DAEDALUS and with obstructed perception.

Goal Number

Density Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

5% 39 38 37 36 36

10% 38 37 35 33 31

15% 37 36 34 28 25

20% 35 33 30 27 22

25% 32 26 24 16 13

30% 28 23 21 13 9

35% 22 14 11 5 0

obstacle densities 15% through 25% the swarm perfor-

mance is significantly better compared to the results in

the experiment 2 (see Table 2). When the obstacle den-

sity is 15%, more than 62.5% or 25 of the agents reach

the final goal. In the same control study in the second ex-

periment where DAEDALUS is not utilized, only 30% or

12 of the agents reach the final goal, and this is a 32.5%

(13 agents) improvement. The control studies conducted

with 20% and 25% also show significant improvements

of agent survival over the same control studies in the

experiment without DAEDALUS. No agents survive to

reach the last goal when the obstacle density is 35%.

To better understand the impact of obstructed percep-

tion on agents, we conducted the fourth experiment. The

results presented in the Table 4 shows the number of

agents survived to reach a goal with DAEDALUS and

without obstructed perception.

Table 4 : The number of agents survived to reach a goal

with DAEDALUS and without obstructed perception.

Goal Number

Density Goal 1 Goal 2 Goal 3 Goal 4 Goal 5

5% 38 37 37 36 36

10% 38 35 35 31 27

15% 37 34 34 29 26

20% 35 31 30 25 23

25% 34 29 27 24 21

30% 29 23 19 14 12

35% 26 21 18 10 8

40% 21 15 12 5 0

Out of 40 agents 36 agents or 90% of the agents sur-

vive to reach the last goal when the obstacle density is

5%. Once again, the number of agents reaching the last

goal in this control study is very similar to the first control

study in the first experiment. When the obstacle density

is 15%, 65% or 26 of the agents reach the last goal, which

is similar to 62% or 25 of the agents reaching the last goal

of the same control study in the third experiment. At 35%

obstacle density, 20% or 8 of the agents survive to reach

the last goal. No agents survive to reach the last goal

when the obstacle density is 40%. These results show

that DAEDALUS effectively improve the agent survival

in dense environments, even when adapting to new envi-

ronments is much more difficult when the agent interac-

tions are obstructed by obstacles.

6. SUMMARY AND CONCLUSION

The ability for a swarm of mobile agents to quickly

adapt in unknown environments and reach a goal while

avoiding obstacles and maintaining a formation is ex-

tremely important in time critical applications. Our

approach to this is a physics-based autonomous agent

framework combined with our DAEDALUS paradigm

which allows the agents to learn from the neighboring

agents by sharing the force law rules. We explore the

feasibility of DAEDALUS in dense environments using

“swarm survival” as our performance metric, when the

agents are only capable of observing their environment

partially due to obstructed perception. We present our

results with an analysis which shows that the application

of DAEDALUS paradigm significantly improves online

swarm survival by allowing the agents to adapt in dense

environments. The results also show that obstacle avoid-

ance is a much more difficult task in dense environments,

and DAEDALUS significantly enhances the swarm adap-

tation by lowering the rate of agents that get stuck behind

cul-de-sacs.

7. RELATEDWORK

We can subdivide most of the swarm literature based

on the techniques such as behavior-based, rule-based,

swarm intelligence, control-theoretic and physics-based.

Both behavior-based and rule-based systems presented in

[7], [1], [14] applied in a heuristic manner have proven

quite successful in demonstrating a variety of behaviors.

Behavior-based and rule-based techniques do not make

use of potential fields or forces. Instead, they deal di-

rectly with velocity vectors and heuristics for changing

those vectors (although the term “potential field” is of-

ten used in the behavior-based literature, it refers to a

field that differs from the strict Newtonian physics def-

inition). Swarm intelligence techniques are ethologically

motivated and have had excellent success with foraging,

task allocation, and division of labor problems [3], [9].

Control-theoretic approaches have also been applied ef-

fectively (e.g., [6]). Our AP framework does not make

the assumption of having leaders and followers, as in [4],

[5].

Some of the relevant papers in obstacle avoidance con-

text are [1], [2], [7]. Balch [1] examines the situation

of four agents moving in formation through an obstacle

field with 2% coverage. In [2] he extends this to an ob-



stacle field of 5% coverage, and also investigates the be-

havior of 32 agents moving around one medium size ob-

stacle. Fredslund and Matarić [7] examine a maximum of

eight agents moving around two wall obstacles. We have

utilized our AP framework combined with DAEDALUS

paradigm to produce comparable but scalable results in

obstacle avoidance task in more complex and dynamic

environments [10], [11].

The work presented in [16], [12], [13] utilizes different

multi-agent learning paradigms. Tan, [16] uses reinforce-

ment learning to address agent learning by sharing instan-

taneous information, episodes, and learned policies. The

task environment is a 10 by 10 grid world with maximum

of 4 agents, 2 hunters and 2 prey. Our work is concep-

tually similar and was developed independently. The co-

operative learning discussed in [16] is fundamentally of-

fline, whereas in our approach learning is both offline and

online where agents continue to adapt to their changing

environment through cooperation. The agents depending

only on offline learning approach can be problematic due

to complex nature and the unexpected changes in the en-

vironment. The work in [12] utilizes fuzzy automata to

address autonomous mobile robot learning reactive ob-

stacle avoidance task using two robots. The robots share

their experiences while learning the task simultaneously.

Their results clearly show that sharing experience makes

learning faster and more repeatable than the individual

learning. This again attest the observations we presented

in this paper. Pugh and Martinoli in [13] explore how

varying sensor offsets and scaling factors affect parallel

swarm robotic learning of obstacle avoidance behavior

using both a genetic algorithm and particle swarm opti-

mization. In our work, all agents have the same sensor

and we assume that the sensor readings have no vari-

ations. The results show that both algorithms are able

to withstand small variations of sensor offsets and large

variations of sensor scaling factors while showing poor

performance with high offset variations. We intend to uti-

lize sensor offsets and scaling factors in our future work.
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