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Abstract

Purpose- This paper demonstrates a novel use of a generalized Lennard-Jones (LJ) force law in
Physicomimetics, combined with offline evolutionary learning, for the control of swarms of robots
moving through obstacle fields towards a goal. We then extendthe paradigm to demonstrate the utility
of a real-time online adaptive approach named DAEDALUS.

Design/Methodology/Approach- To achieve the best performance, we optimize the parameters
of the force law used in ourPhysicomimeticsapproach, using an evolutionary algorithm (offline learn-
ing). We utilize a weighted fitness function consists of three components: a penalty for collisions, a
penalty for lack of swarm cohesion, and a penalty for robots not reaching the goal. We then give each
robot of the swarm a slightly mutated copy of the optimized force law rule set found with offline learn-
ing and introduce the robots to a more difficult environment.We use our online learning framework
(DAEDALUS) for swarm adaptation in this more difficult environment.

Findings- The novel use of the generalized Lennard-Jones (LJ) force law combined with an evolu-
tionary algorithm surpasses the prior state-of-the-art inthe control of swarms of robots moving through
obstacle fields. In addition, our DAEDALUS framework allowsthe swarms of robots to not only learn
and share behavioral rules in changing environments (in real time), but also to learn the proper amount
of behavioral exploration that is appropriate.

Research limitations/implications- There are significant issues that arise with respect to ”wall
following methods” and ”local minimum trap” problems. We have observed ”local minimum trap”
problems in our work, but we did not address this issue in detail. We intend to explore other approaches
to develop more robust adaptive algorithms for online learning. We believe that we can accelerate the
learning of the proper amount of behavioral exploration.

Practical implications- In order to provide meaningful comparisons, we provide a more complete
set of metrics than prior papers in this area. We examine the number of collisions between robots and
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obstacles, the distribution in time of the number of robots that reach the goal, and the connectivity of
the formation as it moves.

Originality/value- We address the difficult task of moving a large number of robots in formation
through a large number of obstacles. The important real-world constraint of “obstructed perception” is
modeled. The obstacle density is approximately three timesthe norm in the literature. We show how
concepts from population genetics can be used with swarms ofagents to provide fast online adaptive
learning in these challenging environments. In addition, this paper also presents a more complete set
of metrics of performance.

Keywords: Physicomimetics; obstacle avoidance; adaptive learning; obstructed perception;
DAEDALUS.

Paper type: Research paper

1. Introduction

The focus of our research is to design and build rapidly deployable, adaptive, cost-effective,
and autonomous distributed robot swarms. Our objective is to provide a scientific, yet prac-
tical, approach to the design and analysis of swarm behaviors.

The team of robots could vary widely in type, as well as size, e.g., from nanobots to
micro-air vehicles (MAVs) and micro-satellites. A robot’ssensors perceive the world, in-
cluding other robots, and a robot’s effectors make changes to that robot and/or the world, in-
cluding other robots. It is assumed that robots can only sense and affect nearby robots; thus,
a key challenge has been to design ”local” control rules. Notonly do we want the desired
global behavior to emerge from the local interaction between robots (self-organization),
but we also require fault-tolerance, that is, the global behavior degrades very gradually
if individual robots are damaged. Self-repair is also desirable, in the event of damage.
Self-organization, fault-tolerance, and self-repair areprecisely those principles exhibited
by natural physical systems. Thus, many answers to the problems of distributed control can
be found in the natural laws of physics.

In this paper we focus on the application ofPhysicomimeticsto swarms of robots mov-
ing through obstacle fields [Hettiarachchi and Spears (2005)]. Our objective was two-fold.
Prior research in this area has generally focused either on asmall number of robots moving
through a large number of obstacles, or a large number of robots moving through a small
number of obstacles [Balch and Arkin (1998); Balch and Hybinette (2000)]. However, the
more difficult task of moving a large number of robots in formation through a large num-
ber of obstacles is generally not addressed. Also, proposedmetrics of performance are not
complete, ignoring criteria such as the number of collisions between robots and obstacles,
the distribution in time of the number of robots that reach the goal, and the connectivity
of the formation as it moves. Hence, one objective was to provide a more complete set of
metrics from which meaningful comparisons could be made. Second, we used these met-
rics, coupled with a more complete experimental methodology, to examine (a) different
strategies for performing the task, and (b) trade-offs between different criteria.

Several other issues must be addressed before swarms of robots can be successfully
deployed. Due to numerous constraints, such as noise, limited range of interaction with
other agents, delayed feedback, and the distributed autonomy of the agents, it is difficult to
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engineer swarms that learn and adapt in real time [Grefenstette (1989); Wuet al. (1999)].
In traditional “off-line” approaches, an evolutionary algorithm (EA) evolves the behav-

iors of the agents (and their local interactions), such thatthe global task behavior emerges.
A global observer monitors the collective and provides a measure of performance to the in-
dividual agents. Agent behaviors that lead to desirable global behavior are hence rewarded,
and the collective system is gradually evolved to provide optimal global performance.

There are several difficulties with this approach. First, a global observer may not exist.
Second, some (but not all) agents may experience some form ofreward for achieving task
behavior, while others do not. Third, this reward may be delayed, or may be noisy. Fourth,
the above paradigm works well in simulation (offline) but is not feasible for real-world
online applications where unexpected events occur. Finally, the above paradigm may have
difficulty evolving different individual behaviors for different agents (heterogeneity versus
homogeneity).

In this paper we also introduce a novel paradigm for swarm adaptive learning in online
called “DAEDALUS”and show how DAEDALUS can be used to achieve global aggregate
behavior of agents that move through an obstacle field towards a goal when the obsta-
cles obstruct the perception of the agents (i.e. they act to degrade the interactions between
agents).

2. Physicomimetics Framework

This section provides a brief overview of thePhysicomimeticsframework for distributed
control of robots in a swarm [Spears and Spears (1999)]. In the Physicomimeticsframe-
work, virtual physics forces drive a swarm robotics system to a desired configuration or
state. The desired configuration is one that minimizes overall system potential energy, and
the system acts as a molecular dynamics (~F = m~a) simulation.

Each robot has position~p and velocity~v. We use a discrete-time approximation to the
continuous behavior of the robots, with time-step∆t. At each time step, the position of each
robot undergoes a perturbation∆~p. The perturbation depends on the current velocity, i.e.,
∆~p =~v∆t. The velocity of each robot at each time step also changes by∆~v. The change
in velocity is controlled by the force on the robot, i.e.,∆~v = ~F∆t/m, wherem is the mass
of that robot and~F is the force on that robot.F andv denote the magnitude of vectors~F
and~v. A frictional force is included for self-stabilization andis modeled by decreasing the
robot’s velocity by a constant multiplicative factor (< 1) at each time step. Figure 1 shows
the perturbation of the robotsRandR4 due to forces exerted upon them by other robots and
the environment.

Our objective is to have thePhysicomimeticsframework map easily to physical hard-
ware, and thePhysicomimeticsframework reflects this design philosophy. Having a mass
massociated with each robot allows our simulated robots to have momentum. Robots need
not have the same mass. The frictional force allows us to model actual friction, whether it is
unavoidable or deliberate, in the real robotic system. Withfull friction, the robots come to
a complete stop between sensor readings and with no frictionthe robots continue to move
as they sense. The time step∆t reflects the amount of time the robots need to perform their
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Fig. 1. RobotsRandR4 undergo a perturbation to their positions due to forces fromother robots and the environ-
ment. RobotR4 does not sense forces from robotsR1 throughR3 due to sensor proximity.

sensor readings. If∆t is small, the robots get readings very often whereas if the time step is
large, readings are obtained infrequently. We have also included a parameterFmax, which
provides a necessary restriction on the acceleration a robot can achieve. Also, a parameter
Vmax restricts the maximum velocity of the robots (and can alwaysbe scaled appropriately
with ∆t to ensure smooth path trajectories). Figure 2 (top) shows seven outdoor robots run-
ning in formation on Prexy’s Pasture at the University of Wyoming (left) and a dirt road
(right), usingPhysicomimetics. Figure 2 (bottom) shows the same robots (with the same
code) pulling an object with a very uneven distribution of weight and friction.

2.1. Newtonian Force Law

The Newtonian Force Law (Newtonian) has been used in prior work [Spearset al. (2005)]
and is a generalization of the “Newtonian” gravitational force law which includes both
attraction and repulsion. The force law is:

Fi, j =
mimjG

r p (1)

F ≤ Fmax is the magnitude of the force between two robotsi and j, andr is the distance
between the two robots. The masses of the robots are denoted asmi andmj , and are assumed
to be set to 1.0 in this paper. The variableG affects the strength of the force. The variable
p is a user-defined power that controls the reduction in strength with distance. The force
is repulsive ifr < R, attractive ifr > R, and is zero beyond a certain range (e.g., 1.5R),
to enforce the local nature of the force law.R is the desired separation between a robot
and neighboring robots. In order to achieve optimal behavior, the values ofG, p, andFmax

must be determined as well as the amount of friction. The Newtonian force law generally
creates rigid formations that act as solids, even in the presence of sensor and locomotion
uncertainty.
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Fig. 2. Seven robots usingPhysicomimeticsin various outdoor formation and pulling experiments.

2.2. Lennard-Jones (LJ) Force Law

In this paper we also investigate the utility of a second force law, which is a generalization
of the Lennard-Jones (LJ) force law. The LJ potential function was first proposed by John
Lennard-Jones in 1929. This potential function models two distinct forces between neutral
molecules and/or atoms. The forces are based on the distances between the molecules;
at long ranges the attractive force makes the molecules movecloser and at short ranges
the repulsive force makes the molecules move apart, causingthe molecules to maintain a
natural balance. The LJ potential function can be given by the expression:

LJPr = 4ε
[

(σ
r

)12
−

(σ
r

)6
]

(2)

Wheneverσ = r the interaction energy between two molecules is at zero. Thepotential
function is shown in Figure 3 withε = 1 andσ = 1. When the separation distancer > 1,
interaction energy quickly decreases to -1 and then increases and eventually reaches zero
at longer range, causing non-interaction between molecules. Whenr < 1, the interaction
energy between two molecules is very high, reaching∞. The minimum of the function
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occurs atr = 21/6σ , with a value of−ε. Due to the behavior shown by the LJ potential
function, this becomes an ideal function to model interactions between robots and their
environments.
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Fig. 3. Interaction potential of LJ withε = 1 andσ = 1.

To model interactions of robots in a swarm, we need to transform the LJ potential func-
tion to a force function. Since the force between two molecules is the negated derivative of
the potential,

F = −

(

d (LJPr)

dr

)

, (3)

the force between robotsi, j is:

Fi, j =
−4ε

r

[

−12σ12

r13 +
6σ6

r7

]

(4)

and R = 21/6σ is the desired distance between two robots. We generalize the force
function for interaction between two robots as:

Fi, j = 24ε
[

2dσ12

r13 −
cσ6

r7

]

(5)

Again,F ≤ Fmax is the magnitude of the force between two robots, andr is the distance
between the two robots. The variableε affects the strength of the force, whilec and d
control the relative balance between the attractive and repulsive components. In order to
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achieve optimal behavior, the values ofε, c, d, andFmax must be determined as well as the
amount of friction. Our motivation for trying the LJ force law is that (depending on the
parameter settings) it can easily model crystalline solid formations, liquids, and gases. The
pseudocode of thePhysicomimeticsalgorithm that uses the LJ force law for robot-robot
interactions can be found in Hettiarachchi [2007]. By changing the parameter settings of
the force law, we can model liquid or solid behavior of the swarm.

In the next section we compare the performance ofPhysicomimeticson an obstacle
avoidance task, using the two force laws defined above.

3. Methodology

Our simulation architecture, as shown in Figure 4, consistsof four modules: an EA for
evolving the population of force laws, an environment generator, a global observer that
evaluates the performance of a particular force law, and a performance measurement mod-
ule that evaluates the quality of the optimum force law. A detailed discussion of the perfor-
mance measurement module is provided in Section 3.3.

Fig. 4. The architecture of the simulation tool.

Our 2D simulation world is 900×700 in size, and contains a goal, obstacles and robots.
Although we can use up to a maximum of 100 robots and 100 staticobstacles with one
static goal, we placed a compromise number of 40 robots and 90obstacles in the environ-
ment when using the training module, because we were especially interested in determining
whether the learned behavior would scale with the number of robots. The goal is always
placed at a random position in the right side of the world, while the robots are initialized in
the bottom left area. The obstacles are randomly distributed throughout the environment,
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but are kept 50 units away from the initial location of the robots and the goal to avoid prox-
imity collisions. Each circular obstacle has a radiusRo of 10, and the square shaped goal
is 20×20. When 90 obstacles are placed in the environment, roughly4.5% of the envi-
ronment is covered by the obstacles (similar to Balch and Hybinette [2000]). The desired
separation between robotsR is 50, and the maximum velocityVmax is 20. Figure 5 shows 40
robots navigating through randomly positioned obstacles.The larger circles are obstacles
and the square to the right is the goal. Robots can sense otherrobots within a distance of
1.5R, and can sense obstacles within a distance ofRo +20. The goal can be sensed at any
distance.

Fig. 5. 40 robots moving to the goal. The larger circles represent obstacles, while the square in the upper right
represents the goal.

The environment generator creates task environments as in Figure 5 to test the force
laws. The environment consists of robots, randomly positioned obstacles, and a goal. Each
force law is tested onn = 50 different environment instances created by the environment
generator. Each robot carries a copy of the force law and navigates towards the goal while
avoiding obstacles. Robots are given a limited amount of time to accomplish the obstacle
avoidance task and reach the goal while maintaining the formation. We refer to this as an
evaluation run.

f itnessind =
R1 +R2+ · · ·+Rn

n
(6)

The global observer (fitness function) evaluates the performance of the force law in an
instance of the environment and assigns a fitness value,Ri . Each evaluation run must be
completed within a specific time interval, and the fitness assignment occurs at the end of
the time interval which is also the end of an evaluation run. The final fitness,f itnessind, of
an individual is computed oncen evaluation runs are completed.

Once the termination criteria of the EA is met, the EA outputsthe optimal parameter
setting for the force law that is being optimized. The termination criteria of our EA is 100
generations.
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3.1. Optimization using Evolutionary Algorithms

Given generalized force laws, such as the Newtonian force law or Lennard-Jones (LJ), it
is necessary to optimize the parameters to achieve the best performance. We achieve this
task using an Evolutionary Algorithm (EA). EAs are optimization algorithms inspired by
natural evolution. We mutate and recombine a population of candidate solutions (individ-
uals) based on their performance in our environment. One of the major reasons for using
this population-based stochastic algorithm is that it consistently generates individuals that
have robust performance.

To optimize the force law parameters, we use the training module of our simulation
tool. This training module allows the user to specify the type of force law, minimum and
maximum parameter value bounds, the population size, the termination criteria, the muta-
tion rate, and the crossover rate.

Every individual in the population is a vector of real-valued parameters, representing
an instantiation of either the Newtonian or LJ force law (depending on the force law being
optimized).

In addition to friction, the evolving parameters of the Newtonian force law are:

• G - gravitational constant of robot-robot interactions,
• p - power of the force law for robot-robot interactions,
• Fmax - maximum force of robot-robot interactions,

and similar 3-tuples for obstacle/goal-robot interactions. The evolving parameters of the LJ
force law are:

• ε - strength of the robot-robot interactions,
• c - non-negative attractive robot-robot parameter,
• d - non-negative repulsive robot-robot parameter,
• Fmax - maximum force of robot-robot interactions,

and similar 4-tuples for obstacle/goal-robot interactions.
Offspring are generated using one-point crossover with a crossover rate of 60%. Muta-

tion adds/subtracts an amount drawn from aN(0,δ ) Gaussian distribution.a. Each parame-
ter has a 1/L probability of being mutated (L is the number of parameters in an individual).
Mutation ensures that parameter values stay within accepted ranges.

Since we are using an EA that minimizes, the performance of anindividual at each
separate runi (Ri in equation 6) is measured as a weighted sum of penalties:

Ri = w1×PCollision + w2×PNoCohesion+ w3×PNotReachGoal

The weighted fitness function consists of three components:a penalty for collisions, a
penalty for lack of cohesion, and a penalty for robots not reaching the goal.b Since there
is no safety zone around the obstacles [Balch and Hybinette (2000)], a penalty is added to

aWe usedδ = 1.0
bThe results were robust with respect to reasonable values ofthe weights. We usedw1 = 0.4,w2 = 0.4,w3 = 0.2.
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the score if the robots collide with obstacles. The cohesionpenalty is derived from the fact
that in a good (hexagonal) lattice, interior robots should have six local neighbors. A penalty
occurs if a robot has more or less neighbors. If no robot reaches the goal within the time
limit, a penalty occurs.

Figure 6 shows the evolved Newtonian robot-robot force law up to a distance of 75. A
robot can sense another robot up to a distance of 1.5R, where R is 50. The force is repulsive
(< 0) when the distance between robots is less than 50, and it is attractive (> 0) when the
distance is greater than 50. The evolvedFmaxr takes effect when the distance between robots
is less than 35.
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Fig. 6. Evolved Newtonian force law for robot-robot interactions.

Figure 7 shows the evolved LJ robot-robot force law. Force isrepulsive when the dis-
tance between robots is less than 50, and it is attractive when the distance is greater than
50. The evolvedFmaxr takes effect when the distance between robots is less than 45.

The permitted time interval for the robots to reach the goal from their initial position is
set at 2000 simulation time steps. This accounts for approximately 47 seconds of clock time
(we use a Linux-based dual processor Dell machine with IntelXeon 1500MHz processors).
The EA was run with 100 individuals per population and was allowed to terminate after
100 generations. It takes approximately five days for our EA to achieve a parameter set that
provides the desired behavior regardless of the force law that is being optimized.

3.2. Performance Metrics

After optimization, the best force laws are evaluated with our performance module. The
performance module consists of four metrics:
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Fig. 7. Evolved LJ force law for robot-robot interactions.

• Collisions: the number of robots colliding with obstacles.We consider such robots
to be damaged, but they can still move with the formation.

• Swarm connectivity: the maximum number of robots in the swarm that are con-
nected via a communication path. Two robots are connected iftheir separation is
≤ 1.5R.

• Reachability: the percentage of robots that reach the goal.A robot has reached the
goal if it is within 4Rdistance of the goal.

• Time to goal: the amount of time taken by 80% of the robots to reach the goal.
If the number of robots reaching the goal is less than 80%, we denote the time as
’–’.

The importance of the collision, reachability, and time to goal metrics is obvious. We
also consider connectivity, since this is an important metric for the quality of a swarm of
robots acting as a sensor grid. The connectivity result we will provide is the minimum size
of the largest connected swarm, as the swarm moves to the goal.c Although each metric
provides useful information, a more complete picture arises by considering all.

3.3. Simulation Results: Solid and Fluid Behaviors

Both Newtonian and LJ force laws were evolved using our training module. The population
size was 100 and the EA was run for 100 generations. We trainedover scenarios with 40

cThe connectivity metric is more informative than the prior cohesion metric, but is more expensive to compute.
This is why it is only used after training.
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robots and 90 obstacles, so that we could examine whether theevolved behaviors scaled
well with an increasing number of robots.

To measure the performance of the optimized force laws, experiments were carried
out with 20 to 100 robots (in increments of 20), and 20 to 100 obstacles (in increments
of 20). Each experiment was averaged over 50 runs of different robot, goal and obstacle
placements. A ‘–’ entry indicates that the robots did not make it to the goal within the
allotted time period.

Table 1. Summary of results for 100 obstacles, with 40 to 100 robots.

Newtonian Force Law LJ Force Law
Number of Robots 40 60 80 100 40 60 80 100
Number of Collisions 0 3 5 7 0 1 2 4
Connectivity 27 60 80 100 23 37 53 67
Reachability% 29 1 0 0 97 98 98 98
Time to Goal - - - - 600 690 780 870

Since we trained with a large number of obstacles, the numberof obstacles is not an
important factor. However, the number of robots does affectperformance, and we focus
on this aspect here. Table 1 shows a summary of results with 100 obstacles. It is clear that
collisions in both force laws are not a primary concern.

With the Newtonian force law, when there are 40 robots, 29% ofthe robots reach the
goal. However, it is clear that this is achieved by fragmenting the formation into small
parts. When there are more than 40 robots, none reach the goal(within the time period).
Instead, the structure remains connected, but the strict rigidity of the structure prevents it
from making good progress through the obstacle field. It is clear from these results that
training with 40 robots does not yield a Newtonian force law that scales to a larger number
of robots.

With the LJ force law, almost all of the robots make it to the goal, in all circumstances.
The time to reach the goal increases slowly as the number of robots increases. Finally,
swarm connectivity remains reasonably high, ranging from 58% to 67%. Interestingly,
swarm connectivity increases as the number of robots increases, and is almost totally unaf-
fected by the number of obstacles. In contrast with the Newtonian force law, the LJ force
law (which is also trained with 40 robots) scales well with larger numbers of robots. This
provides evidence that the LJ force law is a good model for theswarm behavior that we
desire.

Observation of the system behavior shows that the LJ formation acts like a viscous fluid,
rather than a solid. Although the formation is not rigid, it does tend to retain much of its
structure. Deformations and rotations of portions of the fluid are temporary manifestations
imposed by the obstacles. Hence, the added flexibility of this formation (over that achieved
by the Newtonian force law) has a significant impact on behavior. The optimized LJ force
law provides low collision rates, very high goal reachability rates within a reasonable period



Distributed Adaptive Swarm Learning13

of time, and high swarm connectivity.

Fig. 8. Fifty robots navigating around a large obstacle toward a goal. Robots maintain full connectivity while
avoiding the obstacle by acting as a viscous fluid, using the LJ force law.

Figure 8 shows a sequence of snapshots of 50 robots navigating around a large obstacle.
Robots act as a viscous fluid while avoiding the obstacle. In the first snapshot, robots are
in a fully connected sensor network and are navigating towards the goal, but the robots
have not encountered the obstacle. The second snapshot shows the swarm starting to flow
around the obstacle on two fronts while maintaining 100% connectivity. The third snapshot
shows the robots on the two fronts merging back together. In the final snapshot, the robots
are back in a cohesive formation when they have reached the goal. We observe that when
the swarm reaches the obstacle, it navigates around the obstacle as a viscous fluid while
maintaining 100% connectivity and provides 100% reachability. This fluid type property
of the LJ force law is an emergent behavior of the swarm.

3.4. Discussion and Elaboration

To further analyze our system, we also collected data concerning the change in the connec-
tivity and the percentage of robots reaching the goal, over time. The resulting graphs are
far too numerous to present here, but we present representative examples. All graphs are
averaged over 50 independent runs.

Figure 9 illustrates the change in connectivity of the swarmover time. Two sets of re-
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Fig. 9. Change in connectivity over 1500 time steps for 20 and100 robots through 100 obstacles using Newtonian
and LJ force laws

sults are presented in this graph. The curves at the top are for 100 robots moving through
100 obstacles. The robots controlled by the Newtonian forcelaw remain fully connected
(although, as we know from the prior results, this is becausethe formation has not suc-
ceeded in reaching the goal). However, the swarm connectivity for the LJ-controlled robots
drops after 200 time steps, as the formation begins to move through the obstacle field. After
400 time steps, the formation connectivity increases as therobots reach the goal.

The curves at the bottom are for 20 robots moving through 100 obstacles. In this situa-
tion the Newtonian-controlled robots arrive at the goal, and the swarm connectivity drops
after 800 time steps and then increases after roughly 1050 steps. Because the LJ-controlled
formation moves much more quickly, the formation connectivity drops after 200 time steps
and then increases after roughly 300 steps. It is interesting to note that the LJ-controlled
swarm does not break apart quite as much as the Newtonian-controlled swarm.

Figure 10 shows how the number of robots reaching the goal changes with time. Again,
two sets of results are presented, for 20 and 100 robots moving through 100 obstacles. The
two left-most curves are for the LJ-controlled robots. Notethat, regardless of the number
of obstacles, robots start to arrive at the goal at roughly the same time (300 time steps).
With 20 robots, they have all arrived at the goal by about 500 time steps. This indicates that
all robots arrived at the goal within a 200 time step interval– a relatively narrow band in
time. Increasing the number of robots to 100 increases the time interval to only 500 steps.
The other two curves are for the Newtonian-controlled robots. With 20 robots, they start to
reach the goal at 1000 time steps, and the interval is approximately 400 time steps. When
there are 100 robots, none reach the goal within the allottedtime period.
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Fig. 10. The percentage of 20 and 100 robots reaching the goalthrough 100 obstacles over 1500 time steps using
Newtonian and LJ force laws

3.5. Summary

We presented a novel extension to ourPhysicomimeticsframework, with the use of a gener-
alized Lennard-Jones force law. We then summarized how we used evolutionary algorithms
to optimize the parameters of the force laws. These force laws were tested within the con-
text of moving robotic swarm formations through obstacle fields to a goal.

In addition, we presented novel metrics of performance, namely, the number of robots
that collide with obstacles, their connectivity, the number of robots that reach the goal,
and the time to the goal. Although each metric provides useful information, a much better
picture arises by considering all metrics. Our empirical analysis is methodical, ranging
from 20 to 100 robots, and 20 to 100 obstacles.

Our results indicate that LJ-controlled robots have far superior performance to our more
“classic” Newtonian-controlled robots. This is because the emergent behavior of the LJ-
controlled swarm is to act as a viscous fluid, generally retaining good connectivity while
allowing for the deformations necessary to smoothly flow through the obstacle field. De-
spite being trained with only 40 robots, the emergent behavior scales well to larger numbers
of robots. In contrast, the Newtonian-controlled swarm produces more rigid structures that
have much more difficulty maneuvering through the obstacles. Furthermore, performance
drops dramatically when there are more than 40 robots.

4. Distributed Agent Evolution with Dynamic Adaptation to Local Unexpected
Scenarios

We have shown how ourPhysicomimeticsframework can be used to control formations
of mobile robots that move towards a goal while avoiding obstacles (see Figure 5). An
offlineEA evolved an agent-level force law, such that robots maintained network cohesion,
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avoided the obstacles, and reached the goal. The emergent behavior was that the collective
moved as a viscous fluid [Hettiarachchi and Spears (2005)].

There are several difficulties with the previous approach ofusing an EA to evolve the
behaviors of the agents and their local interactions. First, a global observer may not exist.
Second, some (but not all) agents may experience some form ofreward for achieving task
behavior, while others do not. Third, this reward may be delayed, or may be noisy. Fourth,
the above paradigm works well in simulation (offline), but isnot feasible for real-world
online applications where unexpected events occur. Finally, the above paradigm may have
difficulty evolving different individual behaviors for different agents (heterogeneity versus
homogeneity).

We propose a novel framework, called “Distributed Agent Evolution with Dynamic
Adaptation to Local Unexpected Scenarios” (DAEDALUS) [Hettiarachchiet al. (2006)],
for engineering multi-agent systems that can be used eitheroffline or online. We will ex-
plore how DAEDALUS can be used to achieve global aggregate behavior, by examining
two case studies pertaining to obstacle avoidance. In the first, obstacle density is tripled, far
exceeding the norm in similar studies. In the second, obstructed perception is also modeled
(the obstacles obstruct the perception of the robots). Bothof these changes make the task
far more difficult.

With the DAEDALUS paradigm, we assume that agents (whether software or hard-
ware) move throughout some environment. As they move, they interact with other agents.
These agents may be of the same species or of some other species [Spears (1994)]. Agents
of different species have different roles in the environment. The goal is to evolve agent
behaviors and interactions between agents, in a distributed fashion, such that the desired
global behavior occurs.

Let us further assume that each agent has some procedure to control its own actions,
in response to environmental conditions and interactions with other agents. The precise
implementation of these procedures is not relevant, thus they may be programs, rule sets,
finite state machines, real-valued vectors, force laws, or any other procedural representa-
tion. Agents have a sense of self-worth, or “fitness”. Agentsthat experience direct perfor-
mance rewards have higher fitness. Other agents may not experience any direct reward,
but may in fact have contributed to the agents that did receive direct reward. This “credit
assignment” problem can be addressed in numerous ways, including the “bucket brigade”
algorithm or the “profit sharing” algorithm [Grefenstette (1988)]. Assuming that a set A
of agents has received some direct reward, both algorithms provide reward to the set B of
agents that have interacted (and helped) those in A. Furthertrickle-back rewards are also
given to those agents in set C that helped those in B, and so on.Agents that receive no
rewards lose fitness. If fitness is low enough, agents stop moving or die.

Evolution occurs when individuals of the same species interact. Those agents with high
fitness give their procedures to agents with lower fitness. Evolutionary recombination and
mutation provide necessary perturbations to these procedures, providing increasing perfor-
mance and the ability to respond to environmental changes. Different species may evolve
different procedures, reflecting the different niches theyfill in the environment.



Distributed Adaptive Swarm Learning17

4.1. Online Approach with DAEDALUS

Each robot of the swarm is an individual in a population that interacts with its neighbors.
Each robot contains aslightly mutatedcopy of the optimized LJ force law rule set found
with offline learning. This ensures that our robots are not completely homogeneous. We
allowed this slight heterogeneity because when the environment changes, some mutations
perform better than others. The robots that perform well in the environment will have higher
fitness than the robots that perform poorly. When low fitness robots encounter high fitness
robots, the low fitness robots ask for the high fitness robot’srules. Hence, better performing
robots share their knowledge with their poorer performing neighbors.

When we apply DAEDALUS to obstacle avoidance, we focus on twoaspects of our
swarm: reducing obstacle-robot collisions and maintaining the cohesion of the swarm.
Robots are penalized if they collide with obstacles and/or if they leave their neighbors
behind. The second scenario arises when the robots are left behind in cul-de-sacs. This
causes the cohesion of the formation to be reduced.

4.2. Experimental Methodology of Online Adaptation

Each robot of the swarm contains a slightly mutated copy of the optimized LJ force law
rule set found with offline learning and all robots have the same fitness at the start. There
are five goals to achieve in a long corridor, and between each randomly positioned goal is
a different obstacle course with 90 randomly positioned obstacles. The online 2D world
is 1650× 950, which is larger than the offline world. In our changed environment, each
obstacle has a radius of 30 compared to the offline obstacle radius of 10. More than 16%
of the online environment is covered with the obstacles. Compared to the offline environ-
ment, the online environment triples the obstacle coverage. We also increase the maximum
velocity of the robots to 30 units/sec, making the robots moves 1.5 times faster than in the
offline environment. The LJ force law learned in offline mode is not sufficient for this more
difficult environment, producing collisions with obstacles (due to the higher velocity), and
robots that never reach the goal (due to the high percentage of obstacles). Figure 11 shows
an example of the more difficult environment.

Robots that are left behind (due to obstacle cul-de-sacs) donot proceed to the next goal,
but the robots that had collisions and made it to the goal are allowed to proceed to the next
goal. We assume that damaged robots can be repaired once theyreach a goal.

4.3. DAEDALUS Results

To measure the performance of the DAEDALUS approach, an experiment was carried out
with 60 robots, 5 goals in the long corridor, and 90 obstaclesin between each goal. The
experiment was averaged over 50 runs of different robot, goal, and obstacle placements.
Each robot is given equal initial fitness and “seeded” with a mutated copy of the optimized
LJ force law learned in offline mode. If a robot collides with an obstacle, it’s fitness is
reduced. Whenever a robot encounters another robot with higher fitness, it takes the relevant
parameters pertaining to the obstacle-robot interaction of the better performing robot.
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Fig. 11. 60 robots moving to the goal. The larger circles represent obstacles, while the square in the upper right
represents the goal. The larger obstacles make this environment far more difficult for the robots to traverse.
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Fig. 12. The ratio of colliding robots versus the number of surviving robots, for 60 robots moving through 5 goals
with 90 obstacles in between each goal.

Figure 12 shows the ratio of the number of robots that collided with obstacles versus
the number of robots that survived to reach the goals. The graph indicates that after only
3 goals, the percentage of robots that collide with obstacles has dropped from about 38%
to well under 10%. Inspection of the obstacle-robot parameters indicates that the repulsive
component increased through the online process of mutationand the copying of superior
force laws (this was confirmed via inspection of the mutated force laws).

This first experiment did not attempt to alleviate the situation where robots are left be-
hind; in fact, only roughly 48% of the original 60 robots reach the final goal (see Figure 13,
lower line). This is caused by the large number of cul-de-sacs produced by the large ob-
stacle density. Our second experiment attempts to alleviate this problem by focusing on
the robot-robot interactions. Our assumption was that the LJ force law needs to provide
stronger cohesion, so that robots aren’t left behind.
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If robots are stuck behind in cul-de-sacs (i.e. they make no progress towards the goal)
and they sense neighbors, they slightly mutate the robot-robot interaction parameters of
their force laws. In a situation in which they do not sense thepresence of neighbors and
do not progress towards the goal, they rapidly mutate their robot-goal interaction causing a
“panic behavior”. These relatively large perturbations ofthe force law allow the robots to
escape their motionless state.

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5

R
ob

ot
s 

S
ur

vi
ve

d

Goal Number

Number of Robots that Survived at Each Stage 

Survival is Important (online)

Collisions are Important (online)

Survival in offline
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the number of robots that survive when using online learning(where the focus is on reducing collisions), and (c)
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Figure 13 shows the results of this second experiment. In comparison with the first
experiment (with survival rates of 43%), the survival rateshave increased to 68%. As a
control experiment, we ran our offline EA approach on this more difficult task. After five
goals, the survival rate is about 78%. Recall that the offlineresults are obtained by running
an EA with a population size of 100 for 100 generations, with each individual averaged over
50 random instantiations of the environment. As can be seen,the DAEDALUS approach
provides results only somewhat inferior to the offline approach, in real time, while the
robots are in the environment.

Although not shown in the graph, it is important to point out that the collision rates
were not affected in the second experiment. Hence, we believe that it is quite feasible to
combine both aspects in the future. Collision avoidance canbe improved via mutation of
the obstacle-robot interaction, while survival can be improved via mutation of the robot-
robot interaction and robot-goal interaction.

5. Obstructed Perception

When a robot can not see another robot, due to the presence of obstacles, we call this
“obstructed perception.” When the robot’s line of sight lies along an edge of an obstacle, the
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robots are capable of sensing each other. Surprisingly, this is not generally modeled in prior
work in this area [Balch and Hybinette (2000)]. In the results given above, obstacles did not
obstruct perception. The addition of obstructed perception makes the task far more difficult,
especially as obstacle size increases [Hettiarachchi and Spears (2006)]. Figure 14 shows an
example scenario of obstructed perception. The larger circle represents an obstacle, and
A andB are robots. We defineminD to be the minimum distance from the center of the
obstacle to the line of sight of robotA and robotB, andr is the radius of an obstacle. If
r > minD, then robotA and robotB have their perception obstructed.

Fig. 14. Sensing capability of two robots(A,B) is obstructed by a large obstacle(C).

We utilize a parameterized description of a line segment [Haeck (2002)] to find the
minD.

minD=

√

(((1−q)×Xa+q×Xb)−Xc)
2 +(((1−q)×Ya +q×Yb)−Yc)

2 (7)

where (Xa, Ya) and (Xb, Yb) are thex,y positions of robotsA andB, (Xc, Yc) is the position
of the center of an obstacle, andq is the minimum function that is defined by:

((Xc−Xa)× (Xb−Xa)+ (Yc−Ya)× (Yb−Ya))
(

(Xb−Xa)
2 +(Yb−Ya)

2
) (8)

5.1. Results with Obstructed Perception

We compared DAEDALUS to three control studies. In the first control study, we train the
robots with an offline EA on small obstacles, and then test them again on small obstacles to
verify their performance. In the second control study, we train the robots with an offline EA
on large obstacles and test them on large obstacles. The purpose of this control study is to
clarify the difficulty of the task. Finally, in the third control study, we train the robots with
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an offline EA on small obstacles and test them on large obstacles. The purpose of this study
was to see how well the knowledge learned while avoiding small obstacles transferred to
large obstacles.

Figure 15 shows the results. They-axis gives the number of robots that survived to
reach the goal at each stage for the four different experiments. The top performance curve
is for the first control study. Note that learning with small obstacles in offline mode is not
hard, and the robots perform very well in the online environment. This is due to the fact that
the small obstacles make the environment less dense providing the robots sufficient space
to navigate. Out of 60 initial robots released in the online environment, 93.3% survived to
reach the last goal. With such small obstacles (which is the maximum density examined in
the related literature), obstructed perception is not an important issue.

As presented earlier, robots that learned without obstructed perception on larger obsta-
cles had a reasonably high survival rate (78%). The bottom (dashed) performance curve
shows the effect of obstructed perception (the second control study). Learning with large
obstacles in offline mode with obstructed perception is verydifficult, and the test results
show that out of 60 robots released initially into the onlineenvironment only 35% (21
robots) survived to reach the last goal. This is due to the fact that the environments with
larger obstacles create large numbers of cul-de-sacs that obstruct perception.

The third control study, where offline training occurs with small obstacles and testing
occurs with large obstacles, is surprisingly good (see “NO DAEDALUS (small-large)”).
Despite an initial drop in performance, performance at the fifth goal is quite acceptable
(out of the initial 60 robots, 40% (24 robots) survived to reach the final goal). This is a 5%
improvement over the robots that were trained on larger obstacles. These results run counter
to accepted wisdom, which states that it is best to train on the hardest environments that
you will encounter. In fact, this example demonstrates thattraining on simpler problems
and applying the knowledge gained to harder problems can potentially provide superior
results. Why is this so? As with developmental psychology, one does not train children on
hard problems immediately, instead, we train them on easierproblems first, in the hopes
that they will learn the “basics” (which are important building blocks for solving other,
more difficult, problems) more quickly.

If we extend the developmental psychology analogy further,we note that we encour-
age children to experiment and modify their behavior, basedon changes in the environ-
ment. Furthermore, they share the lessons learned. This is precisely what the DAEDALUS
system does. The final performance curve in Figure 15 shows the results. With an initial
60 robots, 58.3% or 35 robots survived to reach the last goal.This is a 23.3% improve-
ment over the robots that learned in an environment with the larger obstacles, and a 18.3%
improvement over the robots that learned with small obstacles and tested with the larger
obstacles without DAEDALUS. These preliminary results arevery promising. Although
encouraging the robots (or children) to explore and experiment does provide an early drop-
off in performance (compared to the “NO DAEDALUS (large-large)” curve), the results
after four goals are superior. This is a classic example of “exploration” versus “exploita-
tion”. Pure exploitation of learned knowledge is good up to apoint, but will eventually
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fail as the problems become more difficult. Exploration provides the key to adapt to these
changing environments. DAEDALUS provides just this form ofexploration.

5.2. Homogeneous DAEDALUS Results

For the DAEDALUS performance curve given above, all robots had the same mutation rate,
which was 5%. Hence, each robot had the same rate of exploration. Although the rules for
each robot may differ, their mutations rates are identical,and we refer to this system as
“Homogeneous DAEDALUS”. However, there are numerous problems with this approach.
First, the results may depend quite heavily on choosing the correct mutation rate. How is
this mutation rate to be chosen? Second, the best mutation rate may also depend on the
environment, and should potentially change as the environment changes. How is this to be
accomplished?

Since the mutation rate may have a major effect on performance, we decided to ex-
plore this effect by conducting several experiments with different mutation rates. Figure 16
shows five independent experiments of Homogeneous DAEDALUS. Five different muta-
tion rates were used: 1%, 3%, 5%, 7%, and 9%. The results are quite striking. Of the five
different mutation rates, only 5% and 7% did well (with about35 robots surviving to the
last goal). Recall that the DAEDALUS performance curve shown in Figure 15 resulted
from an arbitrarily chosen mutation rate of 5%. As it turns out, we were extremely fortu-
nate in our design decision. For example, with mutation rates of 1%, 3%, and 9%, at most
20 robots survive to reach the final goal. The performance curve for the 9% mutation rate
is especially interesting. Although promising at first, it appears as if the mutation rate is so
high that it eventually causes an extremely deleterious mutation to appear. Mutation rates
of 1% and 3% are too low to cope with the changed environment.
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5.3. Heterogeneous DAEDALUS Results

In an attempt to address the problem of choosing the correct mutation rate, we divided the
robots into five groups of equal size. Each group of 12 robots was assigned a mutation rate
of 1%, 3%, 5%, 7%, and 9%, respectively. This mimics the behavior of children that have
different “comfort zones” in their rate of exploration. Since different robots have different
mutation rates, we refer to this system as “Heterogeneous DAEDALUS”. Figure 17 shows
the results, in comparison with the three control studies shown in Figure 15. The label
“Het.DAEDALUS(small-large)” shows the survivability of robots with pre-assigned muta-
tion rates. Out of the initial 60 robots, 27 or 45% robots survived to reach the final goal.
Although this is higher than our second and third control studies, it did not produce results
as good as the results achieved with Homogeneous DAEDALUS using a 5% mutation rate
(as shown in Figure 16). In fact, the result at the final goal isessentially identical to the
average of the five performance curves shown in Figure 16.

5.4. Extended Heterogeneous DAEDALUS Results

In an attempt to improve performance, we again borrowed fromthe analogy of a “swarm”
of children learning some task. Not only do they share usefulinformation as to the rules
they might use, but they also share meta-information as to the level of exploration that is
actually safe! Very bold children might encourage their more timid comrades to explore
more than they would initially. On the other hand, if a very bold child has an accident, the
rest of the children will become more timid. In “Extended Heterogeneous DAEDALUS”,
five groups of children are again initialized with mutation rates of 1%, 3%, 5%, 7%, and
9%. However, in this situation, if a robot receives the rulesfrom a neighbor (which, again,
occurs if that robot is in trouble), it also receives the neighbor’s mutation rate. In this imple-
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mentation, children in trouble not only change their rules,but their mutation rate. Figure 18
shows the results of this study. The curve labeled with “Ex.Het.DAEDALUS(small-large)”
refers to the survivability of robots with pre-assigned mutation rates that also allows the
robots to receive a neighbor’s mutation rate, if the robot receives the neighbor’s rules. The
behavior is quite good. On average, 32 robots survive to reach the final goal, which is very
close to the optimum value of 35 found by the best HomogeneousDAEDALUS experi-
ment.

5.5. Effect of Mutation in Swarm Learning

We explored the effect of heterogeneous swarms in an online environment and compared
our results with the offline homogeneous swarms. We maintained the diversity in our het-
erogeneous swarm by allowing robots to exchange their predefined mutation rates. The
robots learned to avoid cul-de-sacs in the online environment and maintain the diversity
of the population. Table 2 shows the mutation rates of robotsthat survive to reach a goal,
averaged over 20 runs.

At the beginning, there are five groups of robots. They are initialized with mutation
rates of 1%, 3%, 5%, 7%, and 9%. The robots with 1% and 3% mutation rates had a
more difficult time surviving compared to the robots with other three mutation rates. Thirty
seven robots survived to reach the fifth goal, and clearly the5% and the 7% mutation rates
performed better than the other three mutation rates. With 1% mutation, seven robots did
not reach the fifth goal, and with 9% mutation, five robots did not reach the fifth goal.
Notice that there are still robots with all five mutation rates surviving in the environment.
This still maintains the diversity of the swarm.
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Mutation Rate
robots survive 1% 3% 5% 7% 9%

60-start 12 12 12 12 12
54-goal 1 10 10 11 12 11
47-goal 2 9 8 11 10 9
42-goal 3 6 7 11 10 8
39-goal 4 6 6 10 9 8
37-goal 5 5 6 10 9 7

Table 2. The number of robots that survive to reach a goal and their mutation rates.

5.6. Summary

Traditional approaches to designing multi-agent systems are offline, and assume the pres-
ence of a global observer. However, this approach will not work in real-time online sys-
tems. We presented a novel approach to solving this problem,called DAEDALUS, where
we showed how concepts from population genetics could be used with swarms of agents to
provide fast online adaptive learning in changing environments.

We addressed the important issue of “obstructed perception” in learning behaviors for
swarms of robots that must avoid obstacles while reaching a goal. This issue has been
largely absent from the literature. Our obstacle density isalso three times higher than the
norm, making obstacle avoidance a far more difficult task. Since obstructed perception
makes the task far more difficult, DAEDALUS had to be extended. Our first extension was
to allow different robots to have different rates of exploration, which affects the rate at
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which they change their behavioral rules. The second extension allows robots to also share
their rates of mutation, allowing robots to find the right balance between exploration and
exploitation. Results of the extended system are almost as good as the best results we were
able to achieve when the exploration rates were controlled by hand. Our framework allows
swarms of robots to not only learn and share behavioral rulesin changing environments (in
real time), but also to learn the proper amount of behavioralexploration that is appropriate
(see [Hettiarachchi (2007)] for full results).

6. Related Work

In the specific context of obstacle avoidance, the most relevant papers are [Balch and Arkin
(1998)], [Balch and Hybinette (2000)] and [Fredslund and Matarić (2002)]. Balch and
Arkin [1998] examines the situation of four robots moving information through an obsta-
cle field with 2% coverage. In Balch and Hybinette [2000], they extend this to an obstacle
field of 5% coverage, and also investigate the behavior of 32 robots moving around one
medium size obstacle. Fredslund and Matarić [2002] examine a maximum of eight robots
moving around two wall obstacles. To the best of our knowledge, we are the first to sys-
tematically examine larger numbers of robots and obstacles.

The work done in ÓHaraet al. [2005] uses an embedded network distributed through-
out the environment to approximate the path-planning spaceand uses the network to com-
pute a navigational path using GNATs when the environment changes. The dynamism of
the environment is modeled with an opening and closing door in the experimental setup.
However, the embedded network is immobile, whereas our network is completely mobile.

In the specific context of adaptive learning of multi-agent systems, some of the rele-
vant papers are [Watsonet al. (2002)] , [Crawford and Veloso (2005)], [Kira and Schultz
(2006)], and [Goldman and Zilberstein (2003)]. The “Embodied Evolution” concept pre-
sented in Watsonet al. [2002] is applied to eight light seeking physical robots that use
a neural-network controller. This work is conceptually similar to ours and was developed
independently. Their robots broadcast genetic information over their local-range commu-
nication channel, and the other robots who receive this genetic information are allowed to
overwrite their own genetic information. Our robots do not broadcast their genetic infor-
mation, rather they seek genetic information from their neighbors, if there are neighbors,
otherwise they alter their own genetic makeup through mutation. They accept only the ge-
netic information that is required to improve their currentsituation, i.e. a robot that is stuck
behind a cul-de-sac accepts its neighbor’s robot-obstaclegenetic information to change its
state from stuck to moving. DAEDALUS minimizes the communication overhead related
to broadcasting and requirements for complex communication protocols.

Crawford and Veloso [2005] examines the Multi-Agent Meeting Scheduling problem
where distributed software agents negotiate meeting timeson behalf of their users. The
agents learn online which strategies to use when negotiating with different agents by ob-
serving its own rewards as opposed to trying to model the other agents. In this work, the
agents do not use an evolutionary approach for agent-agent negotiation, and do not share
their control structures to maximize their utility, as in our work.
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The work done in Kira and Schultz [2006] uses rule-based robots to continually im-
prove their control system by applying a learning algorithmon an internal simulation of
its environment and to update this simulation to reflect major changes within the environ-
ment. Goldman and Zilberstein [2003] presents a distributed decision-theoretic solution
to a multiple decision making multi-agent system that shares a common set of objectives.
This theoretical formal model based on Markov Decision Processes enables the study of
the trade-off between the cost of information and the value of the information acquired in
the communication process and its influence on the joint utility of the agents.

7. Summary and Conclusion

In this paper examined the performance ofPhysicomimeticson an obstacle avoidance task,
comparing our standard “Newtonian” force law with the Lennard-Jones (LJ) force law.
Our results indicate that the LJ-controlled robots have farsuperior performance to our
Newtonian-controlled robots. This is because the emergentbehavior of the LJ-controlled
swarm is to act as a viscous fluid, generally retaining good connectivity while allowing
for the deformations necessary to smoothly flow through the obstacle field. Despite be-
ing trained with only 40 robots, the emergent behavior scales well to larger numbers of
robots. In contrast, the Newtonian-controlled swarm produces more rigid structures that
have more difficulty maneuvering through the obstacles. Furthermore, performance drops
dramatically when there are more than 40 robots.

In addition, we presented novel metrics of performance, namely, the number of robots
that collide with obstacles, their connectivity, the number of robots that reach the goal,
and the time taken by at least 80% of the robots to reach the goal. Although each metric
provides useful information, a much better picture arises by considering all metrics. Our
empirical analysis is methodical, ranging from 20 to 100 robots, and ranging from 20 to
100 obstacles.

Finally, we proposed a novel framework, called “Distributed Agent Evolution with Dy-
namic Adaptation to Local Unexpected Scenarios” (DAEDALUS), for engineering multi-
agent systems that can be used either offline or online. We showed how concepts from pop-
ulation genetics can be used with swarms of agents to providefast online adaptive learning
in changing environments using DAEDALUS. Our framework allows swarms of robots to
not only learn and share behavioral rules in changing environments (in real time), but also
to learn the proper amount of behavioral exploration that isappropriate. We addressed the
important issue of “obstructed perception” in learning behaviors for swarms of robots that
must avoid obstacles while reaching a goal. This issue has been largely absent from the
literature. Our obstacle density is also three times higherthan the norm, making obstacle
avoidance a far more difficult task.

Currently we are building an Obstacle Avoidance Module (OAM) for our outdoor
robots, so that we can test the utility of the Lennard-Jones potential and DAEDALUS in
real world situations. Initial results have been promising(see Figure 19).

The future directions of our work will focus on improving andextending our contri-
butions as well as applying them to provide practical solutions to complex problems. A
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Fig. 19. Three outdoor robots withPhysicomimeticsand an obstacle avoidance module.

significant portion of this work is dedicated to exploring the issue related to partial obser-
vation. Still, there are significant issues that arise with respect to“wall following methods”
and “local minimum trap” problems. These issues are not adequately addressed in this pa-
per. We have observed “local minimum trap” problems in our work, but we did not make
attempts to address this issue in detail. We intend to introduce a hybrid liquid and gas model
combined with our DAEDALUS approach as a solution. The robots will switch to a gas
model as presented in [Kerret al. (2005)] to avoid the “local minimum trap”. Once the
robots have escaped they can continue using the previous force law. The performance met-
rics we define provide future researchers with meaningful benchmarks of swarm behavior.
A possible extension to these metrics could provide the distribution of sub-swarms and the
number of robots in each sub-swarm.

The results of our heterogeneous swarms are promising, but we believe that robot be-
havior can be further improved by different mutation techniques. We intend to explore other
approaches to develop more robust adaptive algorithms for online learning. We believe that
we can accelerate the learning of the mutation rates. For example, currently, when a robot is
in trouble, it receives the rules and mutation rate of a neighbor that is not in trouble. But this
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same neighbor could also query the robot in trouble to find outits mutation rate. Then the
neighbor could spread this information further, to inform other robots that this particular
mutation rate might be problematic. Also, another possibleavenue for improving the per-
formance of our DAEDALUS approach lies within reward sharing (i.e. credit assignment)
techniques. Current work in classifier systems uses mechanisms such as “bucket-brigade”
or “profit sharing” to allocate rewards to individual “agents” appropriately [Grefenstette
(1988)]. However, these techniques rely on global blackboards and assume that all agents
can potentially act with all others, through a bidding process. We intend to modify these
approaches so that they are fully distributed, and appropriate for online learning of hetero-
geneous swarms.
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