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Abstract

Purpose- This paper demonstrates a novel use of a generalized Lednags (LJ) force law in
Physicomimetigscombined with offline evolutionary learning, for the catof swarms of robots
moving through obstacle fields towards a goal. We then exttemgaradigm to demonstrate the utility
of a real-time online adaptive approach named DAEDALUS.

Design/M ethodology/Approach- To achieve the best performance, we optimize the parameters
of the force law used in olPhysicomimeticapproach, using an evolutionary algorithm (offline learn-
ing). We utilize a weighted fitness function consists of gheemponents: a penalty for collisions, a
penalty for lack of swarm cohesion, and a penalty for robots@aching the goal. We then give each
robot of the swarm a slightly mutated copy of the optimizectédaw rule set found with offline learn-
ing and introduce the robots to a more difficult environm&wé use our online learning framework
(DAEDALUS) for swarm adaptation in this more difficult enoirment.

Findings- The novel use of the generalized Lennard-Jones (LJ) forcedanbined with an evolu-
tionary algorithm surpasses the prior state-of-the-atiércontrol of swarms of robots moving through
obstacle fields. In addition, our DAEDALUS framework allott®e swarms of robots to not only learn
and share behavioral rules in changing environments (Irtine@), but also to learn the proper amount
of behavioral exploration that is appropriate.

Research limitations/implications- There are significant issues that arise with respect to "wall
following methods” and "local minimum trap” problems. Wevieaobserved "local minimum trap”
problems in our work, but we did not address this issue inild&¥e intend to explore other approaches
to develop more robust adaptive algorithms for online leaynWe believe that we can accelerate the
learning of the proper amount of behavioral exploration.

Practical implications- In order to provide meaningful comparisons, we provide aaxcomplete
set of metrics than prior papers in this area. We examine thger of collisions between robots and
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obstacles, the distribution in time of the number of robbtt teach the goal, and the connectivity of
the formation as it moves.

Originality/value- We address the difficult task of moving a large number of elboformation
through a large number of obstacles. The important realewsamstraint of “obstructed perception” is
modeled. The obstacle density is approximately three titmesiorm in the literature. We show how
concepts from population genetics can be used with swarragevits to provide fast online adaptive
learning in these challenging environments. In additibis paper also presents a more complete set
of metrics of performance.

Keywords: Physicomimetics obstacle avoidance; adaptive learning; obstructed pégocg
DAEDALUS.

Paper type: Research paper

1. Introduction

The focus of our research is to design and build rapidly degiite, adaptive, cost-effective,
and autonomous distributed robot swarms. Our objectivepsdvide a scientific, yet prac-
tical, approach to the design and analysis of swarm belsgvior

The team of robots could vary widely in type, as well as sizg,, drom nanobots to
micro-air vehicles (MAVs) and micro-satellites. A robogsnsors perceive the world, in-
cluding other robots, and a robot’s effectors make charmgbst robot and/or the world, in-
cluding other robots. It is assumed that robots can onlyesand affect nearby robots; thus,
a key challenge has been to design "local” control rules. iy do we want the desired
global behavior to emerge from the local interaction betwesbots (self-organization),
but we also require fault-tolerance, that is, the globalavér degrades very gradually
if individual robots are damaged. Self-repair is also adsé, in the event of damage.
Self-organization, fault-tolerance, and self-repair jarecisely those principles exhibited
by natural physical systems. Thus, many answers to thegmabbf distributed control can
be found in the natural laws of physics.

In this paper we focus on the applicationRifysicomimetic® swarms of robots mov-
ing through obstacle fields [Hettiarachchi and Spears (00&ir objective was two-fold.
Prior research in this area has generally focused eitheisarad number of robots moving
through a large number of obstacles, or a large number oftsahoving through a small
number of obstacles [Balch and Arkin (1998); Balch and Hghiim (2000)]. However, the
more difficult task of moving a large number of robots in fotioa through a large num-
ber of obstacles is generally not addressed. Also, proposddcs of performance are not
complete, ignoring criteria such as the number of collisibatween robots and obstacles,
the distribution in time of the number of robots that reach goal, and the connectivity
of the formation as it moves. Hence, one objective was toigeoa more complete set of
metrics from which meaningful comparisons could be madeof@, we used these met-
rics, coupled with a more complete experimental methodgltgexamine (a) different
strategies for performing the task, and (b) trade-offs betwdifferent criteria.

Several other issues must be addressed before swarms ¢ idbobe successfully
deployed. Due to nhumerous constraints, such as noisegtinénge of interaction with
other agents, delayed feedback, and the distributed anmpnbthe agents, it is difficult to
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engineer swarms that learn and adapt in real time [Grefita$i989); Wuet al. (1999)].

In traditional “off-line” approaches, an evolutionary atghm (EA) evolves the behav-
iors of the agents (and their local interactions), suchtthefglobal task behavior emerges.
A global observer monitors the collective and provides asuemof performance to the in-
dividual agents. Agent behaviors that lead to desirablbajlbehavior are hence rewarded,
and the collective system is gradually evolved to providénoal global performance.

There are several difficulties with this approach. Firstladbgl observer may not exist.
Second, some (but not all) agents may experience some forewafd for achieving task
behavior, while others do not. Third, this reward may be yledia or may be noisy. Fourth,
the above paradigm works well in simulation (offline) but ist feasible for real-world
online applications where unexpected events occur. Firthlk above paradigm may have
difficulty evolving different individual behaviors for ddrent agents (heterogeneity versus
homogeneity).

In this paper we also introduce a novel paradigm for swarnptagalearning in online
called “DAEDALUS”and show how DAEDALUS can be used to acleiglobal aggregate
behavior of agents that move through an obstacle field tasvardoal when the obsta-
cles obstruct the perception of the agents (i.e. they actgoadie the interactions between
agents).

2. Physicomimetics Framework

This section provides a brief overview of tRdysicomimeticéramework for distributed
control of robots in a swarm [Spears and Spears (1999)].drPtiysicomimeticérame-
work, virtual physics forces drive a swarm robotics systena tdesired configuration or
state. The desired configuration is one that minimizes ¢h@rstem potential energy, and
the system acts as a molecular dynami€s<(ma) simulation.

Each robot has positiop and velocityv. We use a discrete-time approximation to the
continuous behavior of the robots, with time-stépAt each time step, the position of each
robot undergoes a perturbatid. The perturbation depends on the current velocity, i.e.,
Ap = VAt. The velocity of each robot at each time step also changes/byhe change
in velocity is controlled by the force on the robot, i.Ay = FAt /m, wherem is the mass
of that robot and® is the force on that roboE andv denote the magnitude of vectd¥s
andv. A frictional force is included for self-stabilization aiglmodeled by decreasing the
robot’s velocity by a constant multiplicative factot (L) at each time step. Figure 1 shows
the perturbation of the roboBandR, due to forces exerted upon them by other robots and
the environment.

Our objective is to have thehysicomimeticeramework map easily to physical hard-
ware, and thé>hysicomimeticframework reflects this design philosophy. Having a mass
massociated with each robot allows our simulated robotste heomentum. Robots need
not have the same mass. The frictional force allows us to hamtleal friction, whether it is
unavoidable or deliberate, in the real robotic system. \Withriction, the robots come to
a complete stop between sensor readings and with no fritt®nobots continue to move
as they sense. The time st&preflects the amount of time the robots need to perform their
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Fig. 1. RobotRR andR4 undergo a perturbation to their positions due to forces fotimer robots and the environ-
ment. RoboR, does not sense forces from rob&sthroughRs due to sensor proximity.

sensor readings. it is small, the robots get readings very often whereas if the 8tep is
large, readings are obtained infrequently. We have aldodied a parametdfax Which
provides a necessary restriction on the acceleration & oatpoachieve. Also, a parameter
Vimax restricts the maximum velocity of the robots (and can alwag/scaled appropriately
with At to ensure smooth path trajectories). Figure 2 (top) showenseutdoor robots run-
ning in formation on Prexy’s Pasture at the University of \Wyng (left) and a dirt road
(right), usingPhysicomimeticsFigure 2 (bottom) shows the same robots (with the same
code) pulling an object with a very uneven distribution ofgle and friction.

2.1. Newtonian Force Law

The Newtonian Force Law (Newtonian) has been used in priok ({&pearst al. (2005)]
and is a generalization of the “Newtonian” gravitationalck® law which includes both
attraction and repulsion. The force law is:

mm;G
Rij=—rp (1)

F < Fmnaxis the magnitude of the force between two robaad |, andr is the distance
between the two robots. The masses of the robots are dersotediadm;, and are assumed
to be set to 1.0 in this paper. The variallaffects the strength of the force. The variable
p is a user-defined power that controls the reduction in stremith distance. The force
is repulsive ifr < R, attractive ifr > R, and is zero beyond a certain range (e.bRJ},
to enforce the local nature of the force lais the desired separation between a robot
and neighboring robots. In order to achieve optimal behathe values of5, p, andFyax
must be determined as well as the amount of friction. The Neiah force law generally
creates rigid formations that act as solids, even in thegmes of sensor and locomotion
uncertainty.



Distributed Adaptive Swarm Learning5

[ TE ._1'2
k-

L

LA
o, VRS AN

Fig. 2. Seven robots usirfghysicomimeticin various outdoor formation and pulling experiments.

2.2. Lennard-Jones(LJ) Force Law

In this paper we also investigate the utility of a secondddawy, which is a generalization
of the Lennard-Jones (LJ) force law. The LJ potential fuorctivas first proposed by John
Lennard-Jonesin 1929. This potential function models tistrttt forces between neutral
molecules and/or atoms. The forces are based on the distbeteeen the molecules;
at long ranges the attractive force makes the molecules wloger and at short ranges
the repulsive force makes the molecules move apart, catisingolecules to maintain a
natural balance. The LJ potential function can be given byettpression:

e[ (2)(9)] ®

Whenevelo = r the interaction energy between two molecules is at zeropotential
function is shown in Figure 3 witlh = 1 ando = 1. When the separation distance- 1,
interaction energy quickly decreases to -1 and then ineseand eventually reaches zero
at longer range, causing non-interaction between molecMiénenr < 1, the interaction
energy between two molecules is very high, reachindgrhe minimum of the function
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occurs arr = 21/6g, with a value of—¢. Due to the behavior shown by the LJ potential
function, this becomes an ideal function to model intemartibetween robots and their

environments.

Interaction Energy of Lennard-Jones Potential
1 T T T T

Interaction Energy

_1 1 1 1 1
0 1 2 3 4 5

Separation Distance

Fig. 3. Interaction potential of LJ with =1 ando = 1.

To model interactions of robots in a swarm, we need to transtbe LJ potential func-
tion to a force function. Since the force between two molesis the negated derivative of

the potential,

F:_(d(:JrF%)) @)

the force between robotsgj is:

(4)

 —4e [-120'2 60°
R B
andR = 2%/8¢ is the desired distance between two robots. We generaleéotice

function for interaction between two robots as:

2do*?  cob
Fij=24¢ [W_T] (5)
Again,F < Fqaxis the magnitude of the force between two robots, misthe distance
between the two robots. The variatdeaffects the strength of the force, whiteandd
control the relative balance between the attractive andlsef@ components. In order to
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achieve optimal behavior, the valuesst, d, andFnax must be determined as well as the
amount of friction. Our motivation for trying the LJ forcewas that (depending on the
parameter settings) it can easily model crystalline salidations, liquids, and gases. The
pseudocode of thBhysicomimeticalgorithm that uses the LJ force law for robot-robot
interactions can be found in Hettiarachchi [2007]. By cliagghe parameter settings of
the force law, we can model liquid or solid behavior of the swa

In the next section we compare the performanc®lojsicomimeticen an obstacle
avoidance task, using the two force laws defined above.

3. Methodology

Our simulation architecture, as shown in Figure 4, congiff®ur modules: an EA for
evolving the population of force laws, an environment gatwr a global observer that
evaluates the performance of a particular force law, andfafmeance measurement mod-
ule that evaluates the quality of the optimum force law. Aaidet! discussion of the perfor-
mance measurement module is provided in Section 3.3.

Environment
Generator

Create environments

Evolutionary Algorithm

evolving population of
torce laws

Particular
force law

Run gimulator with
particular force law.
Measure performance
w/n environments

Return performance to EA

Qutput best force law if desired performance met or time elapsed

Use metrics to measure
the quality of force laws

Fig. 4. The architecture of the simulation tool.

Our 2D simulation world is 90@ 700 in size, and contains a goal, obstacles and robots.
Although we can use up to a maximum of 100 robots and 100 sthstacles with one
static goal, we placed a compromise number of 40 robots arudbScles in the environ-
mentwhen using the training module, because we were edigéciarested in determining
whether the learned behavior would scale with the numbeolobts. The goal is always
placed at a random position in the right side of the world |ettie robots are initialized in
the bottom left area. The obstacles are randomly distribtiteoughout the environment,
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but are kept 50 units away from the initial location of theatsband the goal to avoid prox-
imity collisions. Each circular obstacle has a radi4sof 10, and the square shaped goal
is 20x 20. When 90 obstacles are placed in the environment, rouybBt of the envi-
ronment is covered by the obstacles (similar to Balch andétte [2000]). The desired
separation between robdRds 50, and the maximum velocitaxis 20. Figure 5 shows 40
robots navigating through randomly positioned obstadlég. larger circles are obstacles
and the square to the right is the goal. Robots can senserothets within a distance of
1.5R, and can sense obstacles within a distand&,ef 20. The goal can be sensed at any
distance.
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Fig. 5. 40 robots moving to the goal. The larger circles regné obstacles, while the square in the upper right
represents the goal.

The environment generator creates task environments agumer5 to test the force
laws. The environment consists of robots, randomly pasétibobstacles, and a goal. Each
force law is tested on = 50 different environment instances created by the enviemtm
generator. Each robot carries a copy of the force law andyasas towards the goal while
avoiding obstacles. Robots are given a limited amount oé timaccomplish the obstacle
avoidance task and reach the goal while maintaining thedtan. We refer to this as an
evaluation run.

fitnesg,g = %l+%2:"'+%” (6)

The global observer (fitness function) evaluates the perdnice of the force law in an
instance of the environment and assigns a fithess vadueiach evaluation run must be
completed within a specific time interval, and the fithessgassent occurs at the end of
the time interval which is also the end of an evaluation rure final fitnessfitness,q, of
an individual is computed onaeevaluation runs are completed.

Once the termination criteria of the EA is met, the EA outghts optimal parameter
setting for the force law that is being optimized. The teratiion criteria of our EA is 100

generations.
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3.1. Optimization using Evolutionary Algorithms

Given generalized force laws, such as the Newtonian foreotaLennard-Jones (LJ), it
is necessary to optimize the parameters to achieve the bdstmmance. We achieve this
task using an Evolutionary Algorithm (EA). EAs are optintipa algorithms inspired by
natural evolution. We mutate and recombine a populatioraatldate solutions (individ-
uals) based on their performance in our environment. Onkefrtajor reasons for using
this population-based stochastic algorithm is that it &xiestly generates individuals that
have robust performance.

To optimize the force law parameters, we use the traininguieodf our simulation
tool. This training module allows the user to specify theetyf force law, minimum and
maximum parameter value bounds, the population size, thartation criteria, the muta-
tion rate, and the crossover rate.

Every individual in the population is a vector of real-valygarameters, representing
an instantiation of either the Newtonian or LJ force law (gleging on the force law being
optimized).

In addition to friction, the evolving parameters of the Newitin force law are:

e G - gravitational constant of robot-robot interactions,
e p - power of the force law for robot-robot interactions,
e Fnax- maximum force of robot-robot interactions,

and similar 3-tuples for obstacle/goal-robot interactiorhe evolving parameters of the LJ
force law are:

e ¢ - strength of the robot-robot interactions,

e C- non-negative attractive robot-robot parameter,
e d - non-negative repulsive robot-robot parameter,
e Fnax- maximum force of robot-robot interactions,

and similar 4-tuples for obstacle/goal-robot interacdion

Offspring are generated using one-point crossover wittoasaver rate of 60%. Muta-
tion adds/subtracts an amount drawn froM(@, 8) Gaussian distributioA.Each parame-
ter has a 1L probability of being mutated.(is the number of parameters in an individual).
Mutation ensures that parameter values stay within acdepteyes.

Since we are using an EA that minimizes, the performance dhdiridual at each
separate run(Z; in equation 6) is measured as a weighted sum of penalties:

Fi = W1 x Peoliision + W2 X Pyocohesiont W3 X PhotReachGoal

The weighted fitness function consists of three componantenalty for collisions, a
penalty for lack of cohesion, and a penalty for robots nothésy the goaf. Since there
is no safety zone around the obstacles [Balch and Hybin2®@Q)], a penalty is added to

aWe usedd = 1.0
PThe results were robust with respect to reasonable valuiee afeights. We used; = 0.4,w, = 0.4,w3 = 0.2.
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the score if the robots collide with obstacles. The cohep@malty is derived from the fact
thatin a good (hexagonal) lattice, interior robots showatddsix local neighbors. A penalty
occurs if a robot has more or less neighbors. If no robot resitiie goal within the time
limit, a penalty occurs.

Figure 6 shows the evolved Newtonian robot-robot force laviaua distance of 75. A
robot can sense another robot up to a distances®, Wwhere R is 50. The force is repulsive
(< 0) when the distance between robots is less than 50, andtitastive ¢~ 0) when the
distance is greater than 50. The evol¥gady takes effect when the distance between robots
is less than 35.

Robot-Robot Interaction of Newtonian Force Law
2 T T T T T

15 b

Force Magnitude

15 h
-2 1 1 1 1 1
20 30 40 50 60 70
Distance
Fig. 6. Evolved Newtonian force law for robot-robot intetfans.

Figure 7 shows the evolved LJ robot-robot force law. Foraejsilsive when the dis-
tance between robots is less than 50, and it is attractivenweedistance is greater than
50. The evolvedryay takes effect when the distance between robots is less than 45

The permitted time interval for the robots to reach the gaahftheir initial position is
set at 2000 simulation time steps. This accounts for apprabdly 47 seconds of clock time
(we use a Linux-based dual processor Dell machine with X#eh 1500MHz processors).
The EA was run with 100 individuals per population and waevedid to terminate after
100 generations. It takes approximately five days for our&achieve a parameter set that
provides the desired behavior regardless of the force lanistbeing optimized.

3.2. Performance Metrics

After optimization, the best force laws are evaluated with performance module. The
performance module consists of four metrics:
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Robot-Robot Interaction of Lennard-Jones Force Law

6 T T T T T T T T T T T T T T

Force Magnitude
o
T
1
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_6 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0O 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Distance

Fig. 7. Evolved LJ force law for robot-robot interactions.

e Collisions: the number of robots colliding with obstacM& consider such robots
to be damaged, but they can still move with the formation.

e Swarm connectivity: the maximum number of robots in the sw#rat are con-
nected via a communication path. Two robots are connectéeiif separation is
< 1.5R.

e Reachability: the percentage of robots that reach the gaalbot has reached the
goal if it is within 4R distance of the goal.

e Time to goal: the amount of time taken by 80% of the robots &xhethe goal.
If the number of robots reaching the goal is less than 80%,emtd the time as

The importance of the collision, reachability, and time tabmetrics is obvious. We
also consider connectivity, since this is an important irodar the quality of a swarm of
robots acting as a sensor grid. The connectivity result vilgpnavide is the minimum size
of the largest connected swarm, as the swarm moves to theé gdthlough each metric
provides useful information, a more complete picture artseconsidering all.

3.3. Simulation Results; Solid and Fluid Behaviors

Both Newtonian and LJ force laws were evolved using our ingimodule. The population
size was 100 and the EA was run for 100 generations. We tramedscenarios with 40

®The connectivity metric is more informative than the priohesion metric, but is more expensive to compute.
This is why it is only used after training.
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robots and 90 obstacles, so that we could examine whethavtiieed behaviors scaled
well with an increasing number of robots.

To measure the performance of the optimized force laws, rexpats were carried
out with 20 to 100 robots (in increments of 20), and 20 to 106tatles (in increments
of 20). Each experiment was averaged over 50 runs of diffemdot, goal and obstacle
placements. A ‘— entry indicates that the robots did not enédkto the goal within the
allotted time period.

Table 1. Summary of results for 100 obstacles, with 40 to bB0Ots.

Newtonian Force Law LJ Force Law
Number of Robots 40 | 60 | 80 100 40| 60| 80| 100
Number of Collisions| 0| 3| 5 7 0 1 2 4
Connectivity 27 | 60 | 80 100|| 23| 37| 53| 67
Reachability% 29| 1] O 0 97| 98| 98| 98
Time to Goal - - - - || 600 | 690 | 780 | 870

Since we trained with a large number of obstacles, the nummbebstacles is not an
important factor. However, the number of robots does affecformance, and we focus
on this aspect here. Table 1 shows a summary of results wittotiétacles. It is clear that
collisions in both force laws are not a primary concern.

With the Newtonian force law, when there are 40 robots, 29%hefrobots reach the
goal. However, it is clear that this is achieved by fragmemtihe formation into small
parts. When there are more than 40 robots, none reach théwgtiah the time period).
Instead, the structure remains connected, but the stgiclityy of the structure prevents it
from making good progress through the obstacle field. Itémcfrom these results that
training with 40 robots does not yield a Newtonian force laattscales to a larger number
of robots.

With the LJ force law, almost all of the robots make it to thalge all circumstances.
The time to reach the goal increases slowly as the numberbaitsdncreases. Finally,
swarm connectivity remains reasonably high, ranging fr@#650 67%. Interestingly,
swarm connectivity increases as the number of robots isese@nd is almost totally unaf-
fected by the number of obstacles. In contrast with the Neiatoforce law, the LJ force
law (which is also trained with 40 robots) scales well wittgler numbers of robots. This
provides evidence that the LJ force law is a good model forsth@rm behavior that we
desire.

Observation of the system behavior shows that the LJ foomaitits like a viscous fluid,
rather than a solid. Although the formation is not rigid, dted tend to retain much of its
structure. Deformations and rotations of portions of thelfare temporary manifestations
imposed by the obstacles. Hence, the added flexibility sffdrimation (over that achieved
by the Newtonian force law) has a significant impact on bedra¥ihe optimized LJ force
law provides low collision rates, very high goal reachaypilates within a reasonable period
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of time, and high swarm connectivity.
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Fig. 8. Fifty robots navigating around a large obstacle tdwa goal. Robots maintain full connectivity while
avoiding the obstacle by acting as a viscous fluid, using thfotce law.
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Figure 8 shows a sequence of snapshots of 50 robots nagjgatinnd a large obstacle.
Robots act as a viscous fluid while avoiding the obstaclehénfirst snapshot, robots are
in a fully connected sensor network and are navigating tdsvéine goal, but the robots
have not encountered the obstacle. The second snapshat gieewarm starting to flow
around the obstacle on two fronts while maintaining 100%eativity. The third snapshot
shows the robots on the two fronts merging back togethehddibhal snapshot, the robots
are back in a cohesive formation when they have reached tle\§ye observe that when
the swarm reaches the obstacle, it navigates around thacbbsts a viscous fluid while
maintaining 100% connectivity and provides 100% reacltgbihis fluid type property
of the LJ force law is an emergent behavior of the swarm.

3.4. Discussion and Elaboration

To further analyze our system, we also collected data coitgethe change in the connec-
tivity and the percentage of robots reaching the goal, duez.tThe resulting graphs are
far too numerous to present here, but we present reprelsentaamples. All graphs are

averaged over 50 independent runs.
Figure 9 illustrates the change in connectivity of the swakmr time. Two sets of re-
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Connectivity of 20 and 100 Robots Through 100 Obstacles Over 1500 Time Steps
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Fig. 9. Change in connectivity over 1500 time steps for 200@irobots through 100 obstacles using Newtonian
and LJ force laws

sults are presented in this graph. The curves at the top ad@€brobots moving through
100 obstacles. The robots controlled by the Newtonian ftaaseremain fully connected
(although, as we know from the prior results, this is becabseformation has not suc-
ceeded in reaching the goal). However, the swarm conngchivrithe LJ-controlled robots
drops after 200 time steps, as the formation begins to mowadh the obstacle field. After
400 time steps, the formation connectivity increases asahets reach the goal.

The curves at the bottom are for 20 robots moving through I3faales. In this situa-
tion the Newtonian-controlled robots arrive at the goat] Hre swarm connectivity drops
after 800 time steps and then increases after roughly 1@p8.sBecause the LJ-controlled
formation moves much more quickly, the formation connéfgtidrops after 200 time steps
and then increases after roughly 300 steps. It is inteigétimote that the LJ-controlled
swarm does not break apart quite as much as the Newtonidrmlied swarm.

Figure 10 shows how the number of robots reaching the goalggsawith time. Again,
two sets of results are presented, for 20 and 100 robots mdwiough 100 obstacles. The
two left-most curves are for the LJ-controlled robots. Nibiat, regardless of the number
of obstacles, robots start to arrive at the goal at roughdysiime time (300 time steps).
With 20 robots, they have all arrived at the goal by about %@ steps. This indicates that
all robots arrived at the goal within a 200 time step interval relatively narrow band in
time. Increasing the number of robots to 100 increases e ititerval to only 500 steps.
The other two curves are for the Newtonian-controlled rebdfith 20 robots, they start to
reach the goal at 1000 time steps, and the interval is appaiely 400 time steps. When
there are 100 robots, none reach the goal within the allditteel period.
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Reachability of 20 and 100 Robots Through 100 Obstacles
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Fig. 10. The percentage of 20 and 100 robots reaching thetlymaigh 100 obstacles over 1500 time steps using
Newtonian and LJ force laws

3.5. Summary

We presented a novel extension to 8lysicomimetickamework, with the use of a gener-
alized Lennard-Jones force law. We then summarized how e @solutionary algorithms
to optimize the parameters of the force laws. These force laare tested within the con-
text of moving robotic swarm formations through obstacli&lfi¢o a goal.

In addition, we presented novel metrics of performance,etgrthe number of robots
that collide with obstacles, their connectivity, the numbérobots that reach the goal,
and the time to the goal. Although each metric provides useformation, a much better
picture arises by considering all metrics. Our empiricalgsis is methodical, ranging
from 20 to 100 robots, and 20 to 100 obstacles.

Our results indicate that LJ-controlled robots have faesigp performance to our more
“classic” Newtonian-controlled robots. This is because émergent behavior of the LJ-
controlled swarm is to act as a viscous fluid, generally néntgi good connectivity while
allowing for the deformations necessary to smoothly flovotigh the obstacle field. De-
spite being trained with only 40 robots, the emergent beltadales well to larger numbers
of robots. In contrast, the Newtonian-controlled swarndpices more rigid structures that
have much more difficulty maneuvering through the obstaélaghermore, performance
drops dramatically when there are more than 40 robots.

4. Distributed Agent Evolution with Dynamic Adaptation to L ocal Unexpected
Scenarios

We have shown how ouPhysicomimeticéramework can be used to control formations
of mobile robots that move towards a goal while avoiding ablgis (see Figure 5). An
offlineEA evolved an agent-level force law, such that robots maiethnetwork cohesion,
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avoided the obstacles, and reached the goal. The emerdevibewas that the collective
moved as a viscous fluid [Hettiarachchi and Spears (2005)].

There are several difficulties with the previous approactsifig an EA to evolve the
behaviors of the agents and their local interactions. Firgiobal observer may not exist.
Second, some (but not all) agents may experience some forewafd for achieving task
behavior, while others do not. Third, this reward may be yiedia or may be noisy. Fourth,
the above paradigm works well in simulation (offline), bunist feasible for real-world
online applications where unexpected events occur. kirthl above paradigm may have
difficulty evolving different individual behaviors for ddrent agents (heterogeneity versus
homogeneity).

We propose a novel framework, called “Distributed Agent lation with Dynamic
Adaptation to Local Unexpected Scenarios” (DAEDALUS) [tiltachchiet al. (2006)],
for engineering multi-agent systems that can be used aiffflere or online. We will ex-
plore how DAEDALUS can be used to achieve global aggregatevdier, by examining
two case studies pertaining to obstacle avoidance. In stedinstacle density is tripled, far
exceeding the norm in similar studies. In the second, obt&d.perception is also modeled
(the obstacles obstruct the perception of the robots). Bbthese changes make the task
far more difficult.

With the DAEDALUS paradigm, we assume that agents (whetbiware or hard-
ware) move throughout some environment. As they move, thieyact with other agents.
These agents may be of the same species or of some otherssiSusars (1994)]. Agents
of different species have different roles in the environtm&he goal is to evolve agent
behaviors and interactions between agents, in a distddfathion, such that the desired
global behavior occurs.

Let us further assume that each agent has some procedursttoléts own actions,
in response to environmental conditions and interactioitis ather agents. The precise
implementation of these procedures is not relevant, thexs tay be programs, rule sets,
finite state machines, real-valued vectors, force lawsngragher procedural representa-
tion. Agents have a sense of self-worth, or “fithess”. Agéings experience direct perfor-
mance rewards have higher fithess. Other agents may notiexperny direct reward,
but may in fact have contributed to the agents that did receirect reward. This “credit
assignment” problem can be addressed in numerous waysdinglthe “bucket brigade”
algorithm or the “profit sharing” algorithm [GrefenstettE988)]. Assuming that a set A
of agents has received some direct reward, both algorithmade reward to the set B of
agents that have interacted (and helped) those in A. Futtickle-back rewards are also
given to those agents in set C that helped those in B, and sAgents that receive no
rewards lose fitness. If fithess is low enough, agents stoprgay die.

Evolution occurs when individuals of the same specieséauateil hose agents with high
fitness give their procedures to agents with lower fitnessluEwonary recombination and
mutation provide necessary perturbations to these proesgoroviding increasing perfor-
mance and the ability to respond to environmental changiéferént species may evolve
different procedures, reflecting the different niches thilkin the environment.



Distributed Adaptive Swarm Learningl7

4.1. Online Approach with DAEDALUS

Each robot of the swarm is an individual in a population tinétiiacts with its neighbors.
Each robot contains slightly mutatedcopy of the optimized LJ force law rule set found
with offline learning. This ensures that our robots are nohgletely homogeneous. We
allowed this slight heterogeneity because when the enwiesti changes, some mutations
perform better than others. The robots that perform welhé@environmentwill have higher
fithess than the robots that perform poorly. When low fithes®ts encounter high fithess
robots, the low fithess robots ask for the high fitness rolbokss. Hence, better performing
robots share their knowledge with their poorer performiagyhbors.

When we apply DAEDALUS to obstacle avoidance, we focus on &spects of our
swarm: reducing obstacle-robot collisions and maintgjrtime cohesion of the swarm.
Robots are penalized if they collide with obstacles and/dinéy leave their neighbors
behind. The second scenario arises when the robots areelgiftdin cul-de-sacs. This
causes the cohesion of the formation to be reduced.

4.2. Experimental Methodology of Online Adaptation

Each robot of the swarm contains a slightly mutated copy efahtimized LJ force law
rule set found with offline learning and all robots have theaditness at the start. There
are five goals to achieve in a long corridor, and between eswthomly positioned goal is
a different obstacle course with 90 randomly positionedanss. The online 2D world
is 1650x 950, which is larger than the offline world. In our changediemment, each
obstacle has a radius of 30 compared to the offline obstadiesaf 10. More than 16%
of the online environment is covered with the obstacles. Ganed to the offline environ-
ment, the online environment triples the obstacle coveagealso increase the maximum
velocity of the robots to 30 units/sec, making the robots @sal.5 times faster than in the
offline environment. The LJ force law learned in offline mogleat sufficient for this more
difficult environment, producing collisions with obstagl@gue to the higher velocity), and
robots that never reach the goal (due to the high percenfagestacles). Figure 11 shows
an example of the more difficult environment.

Robots that are left behind (due to obstacle cul-de-sacsptproceed to the next goal,
but the robots that had collisions and made it to the goallfoeed to proceed to the next
goal. We assume that damaged robots can be repaired onaetukya goal.

4.3. DAEDALUS Results

To measure the performance of the DAEDALUS approach, anrgrpat was carried out
with 60 robots, 5 goals in the long corridor, and 90 obstatidsetween each goal. The
experiment was averaged over 50 runs of different robotl, goal obstacle placements.
Each robot is given equal initial fitness and “seeded” withudated copy of the optimized
LJ force law learned in offline mode. If a robot collides with abstacle, it's fitness is
reduced. Whenever a robot encounters another robot witlehfgness, it takes the relevant
parameters pertaining to the obstacle-robot interactidheobetter performing robot.
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Fig. 11. 60 robots moving to the goal. The larger circles @spnt obstacles, while the square in the upper right
represents the goal. The larger obstacles make this envénainfar more difficult for the robots to traverse.
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Fig. 12. The ratio of colliding robots versus the number af/sting robots, for 60 robots moving through 5 goals
with 90 obstacles in between each goal.

Figure 12 shows the ratio of the number of robots that cadlidéth obstacles versus
the number of robots that survived to reach the goals. Thehgradicates that after only
3 goals, the percentage of robots that collide with obssaates dropped from about 38%
to well under 10%. Inspection of the obstacle-robot paransehdicates that the repulsive
component increased through the online process of mutatidrthe copying of superior
force laws (this was confirmed via inspection of the mutatedd laws).

This first experiment did not attempt to alleviate the sitwatvhere robots are left be-
hind; in fact, only roughly 48% of the original 60 robots rhahe final goal (see Figure 13,
lower line). This is caused by the large number of cul-desgaoduced by the large ob-
stacle density. Our second experiment attempts to alkevias problem by focusing on
the robot-robot interactions. Our assumption was that théokce law needs to provide
stronger cohesion, so that robots aren’t left behind.
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If robots are stuck behind in cul-de-sacs (i.e. they makerogness towards the goal)
and they sense neighbors, they slightly mutate the rodmitrimteraction parameters of
their force laws. In a situation in which they do not senseptesence of neighbors and
do not progress towards the goal, they rapidly mutate tbbint-goal interaction causing a
“panic behavior”. These relatively large perturbationshe force law allow the robots to
escape their motionless state.

Number of Robots that Survived at Each Stage
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Fig. 13. A comparison of (a) the number of robots that surwixen rules are learned using offline learning, (b)
the number of robots that survive when using online learivigere the focus is on reducing collisions), and (c)
the number of robots that survive when using online lear(amgl the focus in on survivability).

Figure 13 shows the results of this second experiment. Inpeoison with the first
experiment (with survival rates of 43%), the survival ratese increased to 68%. As a
control experiment, we ran our offline EA approach on thiserdifficult task. After five
goals, the survival rate is about 78%. Recall that the offi@seilts are obtained by running
an EA with a population size of 100 for 100 generations, wétbleindividual averaged over
50 random instantiations of the environment. As can be sberD)AEDALUS approach
provides results only somewhat inferior to the offline aggtg in real time, while the
robots are in the environment.

Although not shown in the graph, it is important to point duttthe collision rates
were not affected in the second experiment. Hence, we leetlet it is quite feasible to
combine both aspects in the future. Collision avoidancelmimproved via mutation of
the obstacle-robot interaction, while survival can be ioved via mutation of the robot-
robot interaction and robot-goal interaction.

5. Obstructed Perception

When a robot can not see another robot, due to the presendastactes, we call this
“obstructed perception.” When the robot’s line of sighslédong an edge of an obstacle, the
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robots are capable of sensing each other. Surprisingdjigimot generally modeled in prior
work in this area [Balch and Hybinette (2000)]. In the resgitzen above, obstacles did not
obstruct perception. The addition of obstructed perceptiakes the task far more difficult,
especially as obstacle size increases [Hettiarachchi pedrS (2006)]. Figure 14 shows an
example scenario of obstructed perception. The largekecigpresents an obstacle, and
A andB are robots. We definminD to be the minimum distance from the center of the
obstacle to the line of sight of robdtand robotB, andr is the radius of an obstacle. If
r > minD, then robotA and roboB have their perception obstructed.

AN

Fig. 14. Sensing capability of two robot8, B) is obstructed by a large obstagle).

B

We utilize a parameterized description of a line segmenefitg2002)] to find the
minD.

minD = /(1 6) % Xa-+ G x Xo) — X0+ (1 - 0) x Yat G x Vo) ~Ye)®  (7)

where Ka, Ya) and (X, Yp) are thex,y positions of robot#\ andB, (X, Yc) is the position
of the center of an obstacle, agds the minimum function that is defined by:

(e = Xa) X (Xo —Xa) + (Yo Ya) X (Y — Ya))
(0% —Xa)?+ (Yo — Ya)?

(8)

5.1. Results with Obstructed Perception

We compared DAEDALUS to three control studies. In the firsitool study, we train the
robots with an offline EA on small obstacles, and then teghthgain on small obstacles to
verify their performance. In the second control study, a@tthe robots with an offline EA
on large obstacles and test them on large obstacles. Thegmuop this control study is to
clarify the difficulty of the task. Finally, in the third comt study, we train the robots with
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an offline EA on small obstacles and test them on large olestathe purpose of this study
was to see how well the knowledge learned while avoiding kotatacles transferred to
large obstacles.

Figure 15 shows the results. Tleaxis gives the number of robots that survived to
reach the goal at each stage for the four different expetisn@&he top performance curve
is for the first control study. Note that learning with smailstacles in offline mode is not
hard, and the robots perform very well in the online envirenmThis is due to the fact that
the small obstacles make the environment less dense pngwitké robots sufficient space
to navigate. Out of 60 initial robots released in the onlinei@nment, 93.3% survived to
reach the last goal. With such small obstacles (which is theimum density examined in
the related literature), obstructed perception is not groitant issue.

As presented earlier, robots that learned without obstduperception on larger obsta-
cles had a reasonably high survival rate (78%). The bottashed) performance curve
shows the effect of obstructed perception (the second alosttrdy). Learning with large
obstacles in offline mode with obstructed perception is \dffjcult, and the test results
show that out of 60 robots released initially into the onlaresironment only 35% (21
robots) survived to reach the last goal. This is due to thetfet the environments with
larger obstacles create large numbers of cul-de-sacslikatiot perception.

The third control study, where offline training occurs withall obstacles and testing
occurs with large obstacles, is surprisingly good (see “NE&EDALUS (small-large)”).
Despite an initial drop in performance, performance at tfie §oal is quite acceptable
(out of the initial 60 robots, 40% (24 robots) survived toate¢he final goal). This is a 5%
improvementover the robots that were trained on largeiaatest. These results run counter
to accepted wisdom, which states that it is best to train erhéirdest environments that
you will encounter. In fact, this example demonstrates ttaahing on simpler problems
and applying the knowledge gained to harder problems caengiatly provide superior
results. Why is this so? As with developmental psychologg does not train children on
hard problems immediately, instead, we train them on eas@lems first, in the hopes
that they will learn the “basics” (which are important burig blocks for solving other,
more difficult, problems) more quickly.

If we extend the developmental psychology analogy furtivernote that we encour-
age children to experiment and modify their behavior, basedhanges in the environ-
ment. Furthermore, they share the lessons learned. Thisdssply what the DAEDALUS
system does. The final performance curve in Figure 15 shogvsetbults. With an initial
60 robots, 58.3% or 35 robots survived to reach the last Jaas is a 23.3% improve-
ment over the robots that learned in an environment withdtgel obstacles, and a 18.3%
improvement over the robots that learned with small obstaahd tested with the larger
obstacles without DAEDALUS. These preliminary results @eey promising. Although
encouraging the robots (or children) to explore and expemirdoes provide an early drop-
off in performance (compared to the “NO DAEDALUS (largega)” curve), the results
after four goals are superior. This is a classic example xpl@ration” versus “exploita-
tion”. Pure exploitation of learned knowledge is good up tpaoént, but will eventually
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Survival of 60 Robots in Online Environment with Obstructed Perception
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Fig. 15. Four different experiments of number of robots simg - all robots are trained with obstructed percep-
tion and tested with and without DAEDALUS. The results areraged over 100 independent runs.

fail as the problems become more difficult. Exploration jdes the key to adapt to these
changing environments. DAEDALUS provides just this formesploration.

5.2. Homogeneous DAEDALUS Results

For the DAEDALUS performance curve given above, all robais the same mutation rate,
which was 5%. Hence, each robot had the same rate of exgloratithough the rules for
each robot may differ, their mutations rates are identiaafl we refer to this system as
“Homogeneous DAEDALUS". However, there are numerous ot with this approach.
First, the results may depend quite heavily on choosing tineect mutation rate. How is
this mutation rate to be chosen? Second, the best mutatienmay also depend on the
environment, and should potentially change as the enviemtichanges. How is this to be
accomplished?

Since the mutation rate may have a major effect on perforsame decided to ex-
plore this effect by conducting several experiments wiffedént mutation rates. Figure 16
shows five independent experiments of Homogeneous DAEDAIR#& different muta-
tion rates were used: 1%, 3%, 5%, 7%, and 9%. The results @eegirking. Of the five
different mutation rates, only 5% and 7% did well (with ab86trobots surviving to the
last goal). Recall that the DAEDALUS performance curve show Figure 15 resulted
from an arbitrarily chosen mutation rate of 5%. As it turns, aue were extremely fortu-
nate in our design decision. For example, with mutatiorsrafel %, 3%, and 9%, at most
20 robots survive to reach the final goal. The performanceector the 9% mutation rate
is especially interesting. Although promising at first,pp&ars as if the mutation rate is so
high that it eventually causes an extremely deleterioustinut to appear. Mutation rates
of 1% and 3% are too low to cope with the changed environment.
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Survival of 60 Robots for Different Mutation Rates with DAEDALUS
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Fig. 16. Five different mutation experiments of robots sting - all robots are trained with obstructed perception
and tested with DAEDALUS. The results are averaged over a@égendent runs.

5.3. Heterogeneous DAEDALUS Results

In an attempt to address the problem of choosing the corretdtian rate, we divided the
robots into five groups of equal size. Each group of 12 robets assigned a mutation rate
of 1%, 3%, 5%, 7%, and 9%, respectively. This mimics the bimaf children that have
different “comfort zones” in their rate of exploration. S8adifferent robots have different
mutation rates, we refer to this system as “Heterogeneol &I US". Figure 17 shows
the results, in comparison with the three control studiesvshin Figure 15. The label
“Het.DAEDALUS(small-large)” shows the survivability obbots with pre-assigned muta-
tion rates. Out of the initial 60 robots, 27 or 45% robots sted to reach the final goal.
Although this is higher than our second and third contradigs, it did not produce results
as good as the results achieved with Homogeneous DAEDAL 5§ @s5% mutation rate
(as shown in Figure 16). In fact, the result at the final goassentially identical to the
average of the five performance curves shown in Figure 16.

5.4. Extended Heterogeneous DAEDALUS Results

In an attempt to improve performance, we again borrowed ftwranalogy of a “swarm”
of children learning some task. Not only do they share usefokmation as to the rules
they might use, but they also share meta-information asedetvel of exploration that is
actually safe! Very bold children might encourage their emtmid comrades to explore
more than they would initially. On the other hand, if a verydchild has an accident, the
rest of the children will become more timid. In “Extended etelgeneous DAEDALUS”,
five groups of children are again initialized with mutati@tes of 1%, 3%, 5%, 7%, and
9%. However, in this situation, if a robot receives the rifesn a neighbor (which, again,
occurs if that robotis in trouble), it also receives the héigr's mutation rate. In this imple-
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Survival of 60 Robots in Online Environment with Obstructed Perception
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Fig. 17. The number of robots surviving with pre-assignedation rates. Mutation rates are not exchanged - all
robots are trained with obstructed perception and testéd aviwithout DAEDALUS. The results are averaged
over 100 independent runs.

mentation, children in trouble not only change their rubeg,their mutation rate. Figure 18
shows the results of this study. The curve labeled with “EX.BAEDALUS(small-large)”
refers to the survivability of robots with pre-assigned atigin rates that also allows the
robots to receive a neighbor’'s mutation rate, if the roboeges the neighbor’s rules. The
behavior is quite good. On average, 32 robots survive tchrdaefinal goal, which is very
close to the optimum value of 35 found by the best HomogenB&EDALUS experi-
ment.

5.5. Effect of Mutation in Swarm Learning

We explored the effect of heterogeneous swarms in an ontiveacament and compared
our results with the offline homogeneous swarms. We maiateihe diversity in our het-
erogeneous swarm by allowing robots to exchange their firmdemutation rates. The
robots learned to avoid cul-de-sacs in the online envirortraad maintain the diversity
of the population. Table 2 shows the mutation rates of roth@ssurvive to reach a goal,
averaged over 20 runs.

At the beginning, there are five groups of robots. They aralised with mutation
rates of 1%, 3%, 5%, 7%, and 9%. The robots with 1% and 3% nountatites had a
more difficult time surviving compared to the robots with@tthree mutation rates. Thirty
seven robots survived to reach the fifth goal, and clearlp#end the 7% mutation rates
performed better than the other three mutation rates. Withniutation, seven robots did
not reach the fifth goal, and with 9% mutation, five robots dad reach the fifth goal.
Notice that there are still robots with all five mutation sagirviving in the environment.
This still maintains the diversity of the swarm.
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Survival of 60 Robots in Online Environment with Obstructed Perception
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Fig. 18. The number of robots surviving with pre-assignedation rates. Mutation rates are exchanged - all
robots are trained with obstructed perception and testéd aviwithout DAEDALUS. The results are averaged
over 100 independent runs.

Mutation Rate
robots survive| 1% | 3% | 5% | 7% | 9%
60-start 12 | 12| 12 | 12 | 12
54-goal 1 10 | 10 | 11 | 12 | 11

47-goal 2 9 8 |11 | 10| 9
42-goal 3 6 7 (11| 10| 8
39-goal 4 6 6 | 10| 9 8
37-goal 5 5 6 | 10| 9 7

Table 2. The number of robots that survive to reach a goalfaeid utation rates.

5.6. Summary

Traditional approaches to designing multi-agent system®#line, and assume the pres-
ence of a global observer. However, this approach will natkwo real-time online sys-
tems. We presented a novel approach to solving this protdeted DAEDALUS, where
we showed how concepts from population genetics could béwib swarms of agents to
provide fast online adaptive learning in changing envirents.

We addressed the important issue of “obstructed percéptidaearning behaviors for
swarms of robots that must avoid obstacles while reachingad ghis issue has been
largely absent from the literature. Our obstacle densiglss three times higher than the
norm, making obstacle avoidance a far more difficult taskc&iobstructed perception
makes the task far more difficult, DAEDALUS had to be extend&uar first extension was
to allow different robots to have different rates of exptara, which affects the rate at
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which they change their behavioral rules. The second exteadiows robots to also share
their rates of mutation, allowing robots to find the rightdvade between exploration and
exploitation. Results of the extended system are almostag gs the best results we were
able to achieve when the exploration rates were controlfdthind. Our framework allows
swarms of robots to not only learn and share behavioral mlelsanging environments (in
real time), but also to learn the proper amount of behavxploration that is appropriate
(see [Hettiarachchi (2007)] for full results).

6. Related Work

In the specific context of obstacle avoidance, the mostaelgvapers are [Balch and Arkin
(1998)], [Balch and Hybinette (2000)] and [Fredslund andtdvia (2002)]. Balch and
Arkin [1998] examines the situation of four robots movinganmation through an obsta-
cle field with 2% coverage. In Balch and Hybinette [2000]ytegtend this to an obstacle
field of 5% coverage, and also investigate the behavior ofoB®ts moving around one
medium size obstacle. Fredslund and Matari¢ [2002] exarmimaximum of eight robots
moving around two wall obstacles. To the best of our knowdgdge are the first to sys-
tematically examine larger numbers of robots and obstacles
The work done in ®laraet al. [2005] uses an embedded network distributed through-

out the environment to approximate the path-planning spadauses the network to com-
pute a navigational path using GNATs when the environmeahghs. The dynamism of
the environment is modeled with an opening and closing dodhe experimental setup.
However, the embedded network is immobile, whereas ouraré&tis completely mobile.

In the specific context of adaptive learning of multi-aggrgtems, some of the rele-
vant papers are [Watsat al. (2002)], [Crawford and Veloso (2005)], [Kira and Schultz
(2006)], and [Goldman and Zilberstein (2003)]. The “EmlsatiEvolution” concept pre-
sented in Watsomet al. [2002] is applied to eight light seeking physical robotatthse
a neural-network controller. This work is conceptually i&mto ours and was developed
independently. Their robots broadcast genetic infornmatiger their local-range commu-
nication channel, and the other robots who receive thistgeimformation are allowed to
overwrite their own genetic information. Our robots do nodxlcast their genetic infor-
mation, rather they seek genetic information from theighbors, if there are neighbors,
otherwise they alter their own genetic makeup through nartaf hey accept only the ge-
netic information that is required to improve their curreittiation, i.e. a robot that is stuck
behind a cul-de-sac accepts its neighbor’s robot-obstgeeietic information to change its
state from stuck to moving. DAEDALUS minimizes the commuation overhead related
to broadcasting and requirements for complex communicgtiotocols.

Crawford and Veloso [2005] examines the Multi-Agent MegtBcheduling problem
where distributed software agents negotiate meeting tionelsehalf of their users. The
agents learn online which strategies to use when negdjiatith different agents by ob-
serving its own rewards as opposed to trying to model thera@pents. In this work, the
agents do not use an evolutionary approach for agent-aggotiation, and do not share
their control structures to maximize their utility, as inrauork.
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The work done in Kira and Schultz [2006] uses rule-basedtsotmocontinually im-
prove their control system by applying a learning algorithman internal simulation of
its environment and to update this simulation to reflect mefj@nges within the environ-
ment. Goldman and Zilberstein [2003] presents a distribdicision-theoretic solution
to a multiple decision making multi-agent system that shareommon set of objectives.
This theoretical formal model based on Markov Decision Bsses enables the study of
the trade-off between the cost of information and the vafudé®information acquired in
the communication process and its influence on the joirtytf the agents.

7. Summary and Conclusion

In this paper examined the performancébfysicomimeticen an obstacle avoidance task,
comparing our standard “Newtonian” force law with the Lerhdones (LJ) force law.
Our results indicate that the LJ-controlled robots havesfgserior performance to our
Newtonian-controlled robots. This is because the emergeimavior of the LJ-controlled
swarm is to act as a viscous fluid, generally retaining goatheotivity while allowing
for the deformations necessary to smoothly flow through thetarle field. Despite be-
ing trained with only 40 robots, the emergent behavior scalell to larger numbers of
robots. In contrast, the Newtonian-controlled swarm poedumore rigid structures that
have more difficulty maneuvering through the obstaclestHeumore, performance drops
dramatically when there are more than 40 robots.

In addition, we presented novel metrics of performance,etgrthe number of robots
that collide with obstacles, their connectivity, the numbérobots that reach the goal,
and the time taken by at least 80% of the robots to reach thie glblaough each metric
provides useful information, a much better picture arisesdnsidering all metrics. Our
empirical analysis is methodical, ranging from 20 to 100atsband ranging from 20 to
100 obstacles.

Finally, we proposed a novel framework, called “Distritdifsgent Evolution with Dy-
namic Adaptation to Local Unexpected Scenarios” (DAEDADISSr engineering multi-
agent systems that can be used either offline or online. Weeshbow concepts from pop-
ulation genetics can be used with swarms of agents to préasienline adaptive learning
in changing environments using DAEDALUS. Our frameworloai swarms of robots to
not only learn and share behavioral rules in changing enwikents (in real time), but also
to learn the proper amount of behavioral exploration thapisropriate. We addressed the
important issue of “obstructed perception” in learning&ebrs for swarms of robots that
must avoid obstacles while reaching a goal. This issue hes laegely absent from the
literature. Our obstacle density is also three times higinan the norm, making obstacle
avoidance a far more difficult task.

Currently we are building an Obstacle Avoidance Module (OAfigr our outdoor
robots, so that we can test the utility of the Lennard-Jomsrtial and DAEDALUS in
real world situations. Initial results have been promigisee Figure 19).

The future directions of our work will focus on improving aestending our contri-
butions as well as applying them to provide practical sohgito complex problems. A
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Fig. 19. Three outdoor robots witPhysicomimeticand an obstacle avoidance module.

significant portion of this work is dedicated to exploring tissue related to partial obser-
vation. Still, there are significant issues that arise watspect to“wall following methods”
and “local minimum trap” problems. These issues are not aaledy addressed in this pa-
per. We have observed “local minimum trap” problems in ourkybut we did not make
attempts to address this issue in detail. We intend to inre@ hybrid liquid and gas model
combined with our DAEDALUS approach as a solution. The relwil switch to a gas
model as presented in [Keet al. (2005)] to avoid the “local minimum trap”. Once the
robots have escaped they can continue using the previausstton. The performance met-
rics we define provide future researchers with meaningfmthmarks of swarm behavior.
A possible extension to these metrics could provide theildigton of sub-swarms and the
number of robots in each sub-swarm.

The results of our heterogeneous swarms are promising, dielieve that robot be-
havior can be furtherimproved by different mutation tecjusis. We intend to explore other
approaches to develop more robust adaptive algorithmsiorelearning. We believe that
we can accelerate the learning of the mutation rates. Fongbea currently, when a robot is
in trouble, it receives the rules and mutation rate of a n@igkhat is not in trouble. But this
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same neighbor could also query the robot in trouble to findteuhutation rate. Then the
neighbor could spread this information further, to inforther robots that this particular
mutation rate might be problematic. Also, another posslsknue for improving the per-
formance of our DAEDALUS approach lies within reward shgrfne. credit assignment)
techniques. Current work in classifier systems uses mesimarguch as “bucket-brigade”
or “profit sharing” to allocate rewards to individual “agsheppropriately [Grefenstette
(1988)]. However, these techniques rely on global blacki®and assume that all agents
can potentially act with all others, through a bidding pssélNe intend to modify these
approaches so that they are fully distributed, and appatsofor online learning of hetero-
geneous swarms.
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