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Abstract

Traditional approaches to designing multi-agent sys-
tems are offline (in simulation), and assume the pres-
ence of a global observer. In the online (real world),
there may be no global observer, performance feedback
may be delayed or perturbed by noise, agents may only
interact with their local neighbors, and only a subset of
agents may experience any form of performance feed-
back. Under these circumstances, it is much more dif-
ficult to design multi-agent systems. DAEDALUS is a
framework designed to address these issues, by mim-
icking more closely the actual dynamics of populations
of agents moving and interacting in a task environment.
The agents modeled with DAEDALUS use mutation as
a mechanism to improve their performance in the task
environment. This paper explores 1) how agent-agent
interaction such as receiving rules and mutation rate
from another agent during navigation and 2) receiving
mean mutation rate computed using agent’s better per-
forming neighbors’ mutation rates when agents are at a
goal affect swarm survival (i.e. agents reaching a goal
within a predefined time interval), and presents a detail
analysis showing how DAEDALUS can be used to im-
prove swarm survival in an online environment. In our
task environment, a swarm of agents navigate through
an obstacle field towards a goal while maintaining a
formation, where the obstacles can obstruct their per-
ception.

1. Introduction
Engineering multi-agent systems is difficult due to numer-
ous constraints, such as noise, limited range of interaction
with other agents, delayed feedback, and the distributed
autonomy of the agents. One potential solution is to au-
tomate the design of multi-agent systems in simulation,
using evolutionary algorithms (EAs) (Grefenstette 1989;
Wu et al. 1999). In this paradigm, the EA evolves the be-
haviors of the agents (and their local interactions), such that
the global task behavior emerges. A global observer mon-
itors the collective and provides a measure of performance
to the individual agents. Agent behaviors that lead to desir-
able global behavior are hence rewarded, and the collective
system is gradually evolved to provide optimal global per-
formance.

There are several difficulties with above evolutionary ap-
proach. First, a global observer may not exist. Second, some

(but not all) agents may experience some form of reward for
achieving task behavior, while others do not. Third, this re-
ward may be delayed, or may be noisy. Fourth, the above
paradigm works well in simulation (offline) but is not fea-
sible for real-world online applications where unexpected
events occur. Finally, the above paradigm may have dif-
ficulty evolving different individual behaviors for different
agents (heterogeneity vs homogeneity).

In our prior work (Hettiarachchi et al. 2006), we intro-
duced “Distributed Agent Evolution with Dynamic Adap-
tation to Local Unexpected Scenarios” (DAEDALUS), for
engineering multi-agent systems that can be used either of-
fline or online and showed how DAEDALUS can be used
to achieve global aggregate behavior of agents that move
through an obstacle field towards a goal. The obstacles ob-
struct the perception of the agents (i.e. they act to degrade
the interactions between agents).

In (Hettiarachchi and Spears 2006), we presented a com-
parative analysis of homogeneous and heterogeneous swarm
learning with and without mutation exchange. To overcome
navigational difficulties, agents mutate and receive rules
from other agents through cooperation. The swarm navi-
gates while maintaining a cohesive formation, where shape
and size of the formation may vary during navigation, (Het-
tiarachchi et al. 2008) towards a goal through obstacles with
their perception obstructed by obstacles.

This paper explores 1) how agent-agent interaction such
as receiving rules and mutation rate from another agent dur-
ing navigation and 2) receiving mean mutation rate com-
puted using agent’s better performing neighbors’ mutation
rates when agents are at a goal affect swarm survival (i.e.
agents reaching a goal within a predefined time interval),
and presents a detail analysis showing how DAEDALUS can
be used to improve swarm survival in an online partially ob-
servable environment.

The rest of this paper is organized as follows. Section
I part A introduces the DAEDALUS paradigm and part B
introduces the partial observability or “Obstructed Percep-
tion”. Section II describes the artificial physics frame work.
Section III presents the experimental methodology with the
proposed swarm survival strategy. Section IV provides an
analysis of the results, and section V summarizes the re-
sults. Section VI discusses the related work in swarm obsta-
cle avoidance and cooperative learning. Finally, concluding



remarks and future work follow in Section VI.

1.1 DAEDALUS

With the DAEDALUS paradigm, we assume that agents
(whether software or hardware) move throughout some en-
vironment. As they move, they interact with other agents.
These agents may be of the same species or of some other
species (Spears 1994). Agents of different species have dif-
ferent roles in the environment. The goal is to evolve agent
behaviors and interactions between agents, in a distributed
fashion, such that the desired global behavior occurs. Let us
further assume that each agent has some procedure to control
its own actions in response to environmental conditions and
interactions with other agents. The precise implementation
of these procedures is not relevant, thus they may be pro-
grams, rule sets, finite state machines, real-valued vectors,
force laws, or any other procedural representation. Agents
have a sense of self-worth or “fitness”.

Each agent of the swarm is an individual in a popula-
tion that interacts with its neighbors. Each agent contains
a slightly mutated copy of the optimized control procedure
found with offline learning with an offline EA. This ensures
that our agents are not completely homogeneous. We al-
lowed this slight heterogeneity because when the environ-
ment changes, some mutations perform better than others.
The agents that perform well in the environment will have
higher fitness than the agents that perform poorly. When low
fitness agents encounter high fitness agents, the low fitness
agents ask for the high fitness agent’s rules. Hence, better
performing agents share their knowledge with their poorer
performing neighbors. To ensure the capability of adapting
to further changes in the environment, agents also occasion-
ally mutate their own rules, according to a predefined mu-
tation rate attached to that agent. In our original version of
DAEDALUS, the agents do not receive mutation rates when
they receive the rules.

1.2 Obstructed Perception

When an agent can not see another agent, due to the presence
of obstacles, we call this “obstructed perception.” When the
agent’s line of sight lies along an edge of an obstacle, the
agents are capable of sensing each other. Figure 1 shows
an example scenario of “obstructed perception”. The larger
circle represents an obstacle, and A and B are agents. We
define minD to be the minimum distance from the center of
the obstacle to the line of sight of agent A and agent B, and
r is the radius of an obstacle. If r > minD, the agent A and
agent B have their perception obstructed.

We utilize a parameterized description of a line segment
(Haeck 2002) to find the minD.

term1 = (((1 − q) ∗ Xa + q ∗ Xb) − Xc)
2

term2 = (((1 − q) ∗ Ya + q ∗ Yb) − Yc)
2

minD =
√

[term1 + term2] (1)

where Xa, Xb are the x positions of agents A and B, Ya,
Yb are the y positions of agents A and B, Xc and Yc are the

Figure 1: Sensing capability of two agents (A,B) is ob-
structed by a large obstacle (C).

x and y positions of the center of an obstacle, and q is the
minimum function that is defined by

((Xc − Xa) ∗ (Xb − Xa) + (Yc − Ya) ∗ (Yb − Ya))
(

(Xb − Xa)
2

+ (Yb − Ya)
2
) (2)

1.3 Obstacle Avoidance

In prior work (Spears et al. 2005) have shown how their
artificial physics framework can be used to self-organize
swarms of mobile agents into hexagonal lattices (networks)
that move towards a goal (see Figure 2). We extended the
framework to include motion towards a goal through an ob-
stacle field. An offline EA evolved an agent-level force law,
such that agents maintained network cohesion, avoided the
obstacles, and reached the goal. The emergent behavior was
that the collective moved as a viscous fluid (Hettiarachchi
and Spears 2005). In our prior work obstacles did not ob-
struct perception. The addition of “obstructed perception”
makes the task far more difficult, especially as obstacle size
increases.

2. The Artificial Physics Framework

In our artificial physics (AP) framework, virtual physics
forces drive a swarm of agents to a desired configuration or
state. The desired configuration is one that minimizes over-
all system potential energy, and the system acts as a molec-

ular dynamics ( ~F = m~a) simulation.
Each agent has position ~p and velocity ~v. We use a

discrete-time approximation of the continuous behavior of
the agents, with time step ∆t. At each time step, the posi-
tion of each agent undergoes a perturbation ∆~p. The per-
turbation depends on the current velocity, i.e., ∆~p = ~v∆t.
The velocity of each agent at each time step also changes
by ∆~v. The change in velocity is controlled by the force on



Figure 2: Seven robots form a hexagon, and move towards a
light source.

the agent, i.e., ∆~v = ~F∆t/m, where m is the mass of that

agent and ~F is the force on that agent. F and v denote the

magnitude of vectors ~F and ~v. A frictional force is included,
for self-stabilization.

From the start, we wished to have our framework map eas-
ily to physical hardware, and our model reflects this design
philosophy. Having a mass m associated with each agent al-
lows our simulated agents to have momentum. Agents need
not have the same mass. The frictional force allows us to
model actual friction, whether it is unavoidable or deliber-
ate, in the real robotic system. With full friction, the agents
come to a complete stop between sensor readings and with
no friction the agents continue to move as they sense. The
time step ∆t reflects the amount of time the agents need to
perform their sensor readings. If ∆t is small, the agents get
readings often, whereas if the time step is large, readings are
obtained infrequently. We have included a parameter Fmax,
which provides a necessary restriction on the acceleration
a agent can achieve. Also a parameter Vmax restricts the
maximum velocity of the agents (and can always be scaled
appropriately with ∆t to ensure smooth path trajectories).

In this paper we utilize a generalized Lennard-Jones (LJ)
force law as the control procedure of our agents. The LJ po-
tential function models two distinct forces between neutral
molecules and atoms. The forces are based on the distances
between the molecules; at long ranges the attractive force
makes the molecules move closer and at short ranges the re-
pulsive force makes the molecules move apart, causing the
molecules to maintain a natural balance. We derive the force
function (i.e. negated derivative of the potential function) for
interaction between two agents as:

Fi,j = 24ǫ

[

2dσ12

r13
−

cσ6

r7

]

(3)

Fi,j ≤ Fmax is the magnitude of the force between two
agents i and j, and r is the distance between the two agents.
σ is the desired separation between agent i and agent j (i.e.
all other neighboring agents). The variable ǫ affects the

strength of the force, while c and d control the relative bal-
ance between the attractive and repulsive components. In
order to achieve optimal behavior, the values of ǫ, c, d, and
Fmax must be determined. Our motivation for using the LJ
force law is that (depending on the parameter settings) it can
easily model crystalline solid formations, liquids, and even
gases.

In the LJ potential function shown in Figure 3, when-
ever ǫ = 1 and σ = r, the interaction energy between two
molecules is at zero, which is the molecule’s equilibrium.
When the separation distance r > 1, interaction energy
quickly decreases to -1 and then increases and eventually
reaches zero due to longer range, causing non-interaction
between molecules. When r < 1, the interaction energy be-
tween two molecules is very high, reaching ∞. Due to the
behavior shown by the LJ potential function, this becomes
an ideal function to model interactions between agents and
their environments.
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Figure 3: Interaction energy of LJ with ǫ = 1 and σ = 1.

3. Experimental Methodology

To achieve the best performance, we have separate force
laws for agent-agent interactions, agent-goal interactions,
and agent-obstacle interactions. Hence ǫ, c, d, and Fmax

must be optimized offline for all three forms of interactions,
resulting in 12 parameters. Agent-agent and agent-obstacle
interactions are local (i.e., agents can only sense nearby
agents and obstacles). The agents are trained with an of-
fline EA, in an offline environment. The agents in offline
environment do not make use of DAEDALUS paradigm.

Offspring are generated using one-point crossover with a
crossover rate of 60%. Mutation adds/subtracts an amount
drawn from a N(0, δ) Gaussian distribution. Each parame-
ter has a 1/L probability of being mutated, where L is the
length of the individual. Mutation ensures that parameter
values stay within accepted ranges.

Since we are using an EA that minimizes, the offline per-
formance of an individual is measured as a weighted sum of
penalties:

w1PCollision + w2PNoCohesion + w3PNotReachGoal



The weighted multi-objective fitness function consists of
three criteria: collision avoidance, maintaining cohesion,
and reaching the goal within a time limit. At each time step,
each criteria is evaluated and added a penalty for under per-
formance. Since there is no safety zone around the obstacles
(Balch and Hybinette 2000), a penalty is added to the score
if the agents collide with obstacles. The cohesion penalty is
derived from the fact that in a good hexagonal lattice, inte-
rior agents should have six local neighbors. A penalty occurs
if an agent has more or less neighbors. If no agent reaches
the goal within the time limit, a penalty occurs.

The environment, as shown in Figure 4, is 900 × 700
with 90 randomly positioned obstacles and each of radius
10, where are all units are in pixels. This yields about 4.5%
obstacle coverage, which is typical of most studies in this
area (Balch and Hybinette 2000). The agents move with
maximum velocity 20 units/sec. The EA does not have great
difficulty producing an optimized LJ force law that avoids
obstacles while allowing all agents to reach the goal.

Figure 4: 40 agents moving to the goal in offline envi-
ronment. The larger circles represent obstacles, while the
square in the upper right represents the goal.

However, the online environment is far more difficult.
The online 2D world is 1000 × 850, and each of the 90
obstacles has a radius of 20 compared to the offline obstacle
radius of 10, where all units are in pixels again. Therefore
more than 13.3% of the online environment is covered with
the obstacles, nearly tripling the obstacle density. We also
increase the maximum velocity of the agents to 30 units/sec
from 20 units/sec, making the agents move 1.5 times faster
than in the offline environment. “Obstructed perception”
occurs in both the offline and online environments.

For the online environment, each agent of the swarm con-
tains a slightly mutated copy of the optimized LJ force law
rule set found with offline learning. There are five goals to
achieve in a long corridor, and between each randomly posi-
tioned goal is a different obstacle course with 90 randomly
positioned obstacles. The LJ force law learned in offline
mode is not sufficient for this more difficult environment,
resulting in agents that never reach the goal (due to the high
percentage of obstacles).

Agents that are left behind (due to obstacle cul-de-sacs)

do not proceed to the next goal, but agents that collide
with obstacles and make it to the goal are allowed to pro-
ceed to the next goal. We assume that damaged agents
can be repaired once they reach a goal. Although the
noise in dynamic environments is not specifically modeled
in our simulation, it has been shown with actual agents
that the Artificial Physics framework is robust to modest
amounts of noise (Spears et al. 2005). In fact, noise
can actually improve performance by overcoming local op-
tima in the behavior space (Martinson and Payton 2005;
Spears and Spears 1999).

In our prior work (Hettiarachchi and Spears 2005; Het-
tiarachchi et al. 2006; Hettiarachchi and Spears 2006;
Hettiarachchi et al. 2008), we have shown that the agents
easily learned to avoid colliding with obstacles and main-
tain cohesive formations, so our focus in this paper is on
agent survival (i.e. the number of agents that reach a goal).
When the agents are left behind in cul-de-sacs, the number
of agents that survive to reach a goal reduces, and this causes
the cohesion of the formation to be reduced. We utilized two
different approaches to improve swarm survival.

• Approach 1: if agenti is not moving (due to an obsta-
cle in the way) and a neighboring agentj is moving, then
agenti receives agentj’s agent-agent interactions, includ-
ing agentj’s mutation rate.

• Approach 2: if agenti is at a goal, agenti computes
the mean mutation rate using agenti’s better performing
neighbors’ mutation rates. The agenti only consider the
neighbors who have higher self-worth or ”fitness” than
the agenti. Then the agenti uses this mean mutation rate
as its own before moving to next goal.

4. Results and Analysis

We compared all our results of DAEDALUS to three control
studies. In the first control study, we train the agents with
an offline EA on small obstacles, and then test them again
on small obstacles to verify their performance. In the sec-
ond control study, we train the agents with an offline EA on
large obstacles and test them on large obstacles. The pur-
pose of this control study is to clarify the difficulty of the
task. Finally, in the third control study, we train the agents
with an offline EA on small obstacles and test them on large
obstacles. The purpose of this study was to see how well
the knowledge learned while avoiding small obstacles trans-
ferred when navigating in environments with large obstacles.
The results of all control studies presented in this paper are
averaged over 25 independent runs.

The Figure 5 shows the results of our first experiment
where the two approaches explained in the Section 3. are
not utilized. In all the figures presented in this section, the
y-axis shows the number of agents that survive to reach a
goal (there are five goals) at each stage of the long corri-
dor. The top performance curve is for the first control study.
Note that learning with small obstacles in the offline mode
is not hard, and the agents perform very well in the online
environment. This is due to the fact that the small obsta-
cles make the environment less dense providing the agents



sufficient space to navigate. Out of the 60 initial agents re-
leased into the online environment, 93.3% survived to reach
the last goal. With such small obstacles (which is the maxi-
mum density examined in majority of the related literature),
the “obstructed perception” is not an important issue.
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Figure 5: The number of agents that survive to reach a goal.
Agents are not allowed to receive mutation rates from an-
other agent during navigation. Agents do not receive mean
mutation rate at a goal.

For the DAEDALUS performance curve labeled
“DAEDALUS(small-large)”, we divided the agents into
five groups of equal size. Each group of 12 agents was
assigned a mutation rate of 1%, 3%, 5%, 7%, and 9%,
respectively. In this control study, agents are not allowed to
receive mutation rate from another agent and the agents do
not receive mean mutation rate of its neighbors at a goal.
Out of the initial 60 agents, 29 or 48.3% agents survived to
reach the final goal.

Since the mutation rate has a major effect on the swarm
performance (Hettiarachchi and Spears 2006), we decided
to explore the mutation rates of the five groups. The Table 1
shows the number of agents that reach a goal and their mu-
tation makeup. Out of the 29 agents that survived to reach
the final goal, 9 agents or 31% had 5% mutation rate. Only
3 agents or about 10% of agents with a mutation rate of 9%
survived to reach the final goal. The agents with 3% and 9%
mutation rates had difficulty coping with the changed en-
vironment; the performance of the agents with 1% and 7%
mutation rates is similar to the agents with 5% mutation rate.

In an attempt to improve the survivability, we again ini-
tialized the five agent groups as in previous experiment with
the mutation rates of 1%, 3%, 5%, 7%, and 9%, respectively.
However, in this second experiment, if an agent receives
rules from a neighbor (which, again, occurs if that agent is in
trouble, agents getting stuck behind cul-de-sacs is an exam-
ple), it also receives the neighbor’s mutation rate. This is the
first approach listed in the Section 3. In this experiment, the
agents do not receive mean mutation rate of its neighbors at
a goal. The curve with the label “DAEDALUS(small-large)”
in Figure 6 shows the results of this study.

Out of the initial 60 agents, 37 or 61.6% agents survived

Mutation Rate

agents survive 1% 3% 5% 7% 9%

60-start 12 12 12 12 12

54-goal 1 11 11 11 11 10

50-goal 2 10 9 11 10 10

39-goal 3 8 6 10 9 6

35-goal 4 8 5 9 8 5

29-goal 5 6 4 9 7 3

Table 1: The number of agents that survive to reach a goal
and their mutation rates. Agents are not allowed to receive
mutation rates from another agent during navigation. Agents
do not receive mean mutation rate at a goal.
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Figure 6: The number of agents that survive to reach a goal.
Agents are allowed to receive mutation rates from another
agent during navigation. Agents do not receive mean muta-
tion rate at a goal.

to reach the final goal. The number of agents reaching the
final goal is an 21.6% improvement over the results seen in
Figure 5, where we do not allow the agents to receive an-
other agent’s mutation rate. Though this improvement is not
statistically significant, it provides a practical significance to
various swarm applications.

Table 2 shows the number of agents that reach a goal
and their mutation makeup for the second experiment. In
this implementation, agents in trouble not only change their
rules, but their mutation rate. The agents do not receive the
mean mutation rate of its neighbors at a goal.

Once again, it is clear that the agents favor 5% and 7%
mutation rates over 1%, 3%, and 9%. Interestingly, this
adaptation shown in Table 2 is not rapid enough to create
a significant impact on mutation makeup of the swarm. Due
to “obstructed perception”, the agent-agent cooperation is
limited during navigation. This lack of cooperation limits
the agents ability to make informed decisions about better
performing mutation rates.

Our results suggest that for the agents to make informed
decisions on good mutation rates to be received, an agent
in trouble is required to cooperate with a large number of



Mutation Rate

agents survive 1% 3% 5% 7% 9%

60-start 12 12 12 12 12

54-goal 1 10 10 11 12 11

47-goal 2 9 8 11 10 9

42-goal 3 6 7 11 10 8

39-goal 4 6 6 10 9 8

37-goal 5 5 6 10 9 7

Table 2: The number of agents that survive to reach a goal
and their mutation rates. Agents are allowed to receive mu-
tation rates from another agent during navigation. Agents do
not receive mean mutation rate at a goal.

other agents. This requirement has limitations during navi-
gation due to “obstructed perception” and the varying forma-
tion cohesiveness. Due to the behavior of the LJ force law,
the fluid like motion learned by the swarm causes the swarm
formation to stretch, reducing cohesiveness when navigat-
ing around the obstacles. When the agents are at a goal,
“obstructed perception” is minimal due to lack of obstacles
around a goal, and the swarm cohesion is high due to agent-
goal interaction. We take these observations into consider-
ation in the second approach explained in the Section 3. In
the second approach, agents receive mean mutation rate of
its neighbors at a goal.

When the swarm is at a goal, each agent computes the
mean mutation rate using that agent’s better performing
neighbors’ mutation rates. The neighbor of an agent is de-
fined by the agent’s sensor range, where r ≤ σ distance.
Each agent accumulate the mutation rates of the neighbors
who have better self-worth or “fitness”, and computes the
mean mutation rate. The agent then uses this mean muta-
tion rate to navigate to the next goal. In this experiment,
all agents compute the mean mutation rate at each goal in
the long corridor with five goals, and the agents that are in
trouble continue to receive mutation rates from other agents.
This experiment combines the two approaches presented in
the Section 3. The curve with the label “DAEDALUS(small-
large)” in Figure 7 shows the results of this experiment.

Out of the initial 60 agents, 41 or 68.3% agents survived
to reach the final goal. This is statistically as well as practi-
cally significant gain over the results in Figure 5.

The results in Table 3 clearly show that the swarm favors
mutation rates in two ranges, 3% <mutation rate≤ 5%
and 5% <mutation rate≤ 7% over the other three muta-
tion rate ranges. The agents that uses the mean of better
performing neighbors’ mutations at a goal rapidly adapt to
their online environment causing the swarm to maintain the
agent survival over the corridor with five goals.

This approach does not introduce new global knowledge
in to our swarm system, and allows the swarm behavior to
emerge through local interactions. The results suggest that
“obstructed perception” has a significant impact on swarm
survival. The “obstructed perception” limits the agent’s abil-
ity to receive mutation rate from another agent during nav-
igation, but once the swarm is at a goal, the agents have
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Figure 7: The number of agents that survive to reach a goal.
Agents are allowed to receive mutation rates from another
agent. Agents receive mean mutation rate at a goal.

Mutation Rate Ranges

agents survive ≤ 1% ≤ 3% ≤ 5% ≤ 7% ≤ 9%

60-start 12 12 12 12 12

54-goal 1 11 11 11 11 10

51-goal 2 1 1 27 22 0

48-goal 3 0 1 30 17 0

45-goal 4 0 1 27 17 0

41-goal 5 0 2 24 15 0

Table 3: The number of agents that survive to reach a goal
and their mutation rates. Agents are allowed to receive mu-
tation rates from another agent during navigation. Agents
receive mean mutation rate at a goal.

improved access to their neighbors due to the swarm cohe-
sion. This cohesive formation at a goal increases the number
of neighbors each agent encounters and allows higher agent-
agent interactions.

To better understand the impact of the combined ap-
proaches presented in Figure 7, we conducted an experiment
only with the second approach presented in the Section 3. In
this experiment, the agents compute and use the mean mu-
tation rate at each goal, but not receive the mutation rates
from other agents during navigation. The results of this ex-
periment is shown in Figure 8.

Out of the initial 60 agents, 34 or 56.6% agents survived
to reach the final goal. The outcome is quite similar to the
second control study in Figure 6, where 37 agents survived
to reach the final goal. Again, there is no significant gain
in survival if only one of the approaches presented in the
Section 3. is used.

The results in Table 4 clearly show that the
swarm again favors mutation rates in two ranges,
3% <mutation rate≤ 5% and 5% <mutation rate≤ 7%
over the other three mutation rate ranges. Utilizing a single
approach do not improve the survival, but utilizing the two
approaches together improve swarm survival significantly.
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Figure 8: The number of agents that survive to reach a goal.
Agents are not allowed to receive mutation rates from an-
other agent. Agents receive mean mutation rate at a goal.

Mutation Rate Ranges

agents survive ≤ 1% ≤ 3% ≤ 5% ≤ 7% ≤ 9%

60-start 12 12 12 12 12

53-goal 1 11 10 11 10 11

44-goal 2 0 1 17 26 0

40-goal 3 0 0 16 24 0

37-goal 4 0 0 13 24 0

34-goal 5 0 0 17 17 0

Table 4: The number of agents that survive to reach a goal
and their mutation rates. Agents are not allowed to receive
mutation rates from another agent. Agents receive mean mu-
tation rate at a goal.

5. Summary

Surviving in one environment with the force laws learned in
an another environment is difficult. This difficulty further in-
creases with the introduction of “obstructed perception”. In
the offline simulation the agents did not learn to avoid cul-
de-sacs; the obstacle density did not produce cul-de-sacs,
leaving sufficient space for the agents to navigate through.
In the online environment agents are not capable of com-
pletely avoiding cul-de-sacs, so they get stuck behind these
cul-de-sacs. To improve swarm survival, we utilized two
approaches. The first approach allows the agents to receive
rules and mutation rates from other agents during navigation
and the second approach allows the agents to compute and
use the mean mutation rate of the neighborhood when the
swarm is at a goal. The least survival rate occurs when the
two approaches are not utilized, utilizing just one approach
improves the survival rate to an insignificant level, and uti-
lizing the two approaches together improves the survival rate
significantly.

6. Related Work

Most of the swarm literature can be subdivided into swarm
intelligence, behavior-based, rule-based, control-theoretic

and physics-based techniques. Swarm intelligence tech-
niques are ethologically motivated and have had excellent
success with foraging, task allocation, and division of la-
bor problems (Bonabeau et al. 1999; Hayes et al. 2001).
Both behavior-based and rule-based systems (Fredslund and
Matarić 2002; Balch and Arkin 1998; Schultz and Parker
2002) have proven quite successful in demonstrating a vari-
ety of behaviors in a heuristic manner. Behavior-based and
rule-based techniques do not make use of potential fields
or forces. Instead, they deal directly with velocity vectors
and heuristics for changing those vectors (although the term
“potential field” is often used in the behavior-based liter-
ature, it refers to a field that differs from the strict New-
tonian physics definition). Control-theoretic approaches
have also been applied effectively (e.g., (Fax and Murray
2002)). Our approach does not make the assumption of
having leaders and followers, as in (Desai et al. 1998;
2001).

In the specific context of obstacle avoidance, the most rel-
evant papers are (Balch and Arkin 1998; Balch and Hybi-
nette 2000; Fredslund and Matarić 2002). Balch (Balch and
Arkin 1998) examines the situation of four agents moving
in formation through an obstacle field with 2% coverage. In
(Balch and Hybinette 2000) he extends this to an obstacle
field of 5% coverage, and also investigates the behavior of
32 agents moving around one medium size obstacle. Fred-
slund and Matarić (Fredslund and Matarić 2002) examine a
maximum of eight agents moving around two wall obstacles.

The work done in (OH́ara et al. 2005) uses an embed-
ded network distributed throughout the environment to ap-
proximate the path-planning space and use the network to
compute a navigational path using GNATs when the en-
vironment changes. The dynamism of the environment is
modeled with an opening and closing door in the experi-
mental setup. However, the embedded network is immobile,
whereas our network is completely mobile.

The work done in (Tan 1993) uses reinforcement learning
to address agent learning by sharing instantaneous informa-
tion, episodes, and learned policies. The task environment is
a 10 by 10 grid world with maximum of 4 agents, 2 hunters
and 2 prey. Our work is conceptually similar and was de-
veloped independently. The cooperative learning discussed
in (Tan 1993) is fundamentally offline, whereas in our ap-
proach learning is both offline and online where agents con-
tinue to adapt to their changing environment through coop-
eration. The agents depending only on offline learning ap-
proach can be problematic due to complex nature and the
unexpected changes in the environment.

7. Conclusion and Future Work

In this paper, we explore how agent-agent interaction such
as receiving rules and mutation rate from another agent dur-
ing navigation affect swarm survival (i.e. agents reaching a
goal within a predefined time interval). To overcome naviga-
tional difficulties, agents mutate and receive rules from other
agents through cooperation, while navigating through obsta-
cles towards a goal with “obstructed perception”, also main-
taining their formation. We explored two approaches 1) how



agent-agent interaction such as receiving rules and mutation
rate from another agent during navigation and 2) receiving
mean mutation rate of agent’s neighbors when agents are at
a goal affect swarm survival. The results suggest that ob-
structed perception has a significant impact on swarm sur-
vival, but the agents can make use of higher level of swarm
cohesion at a goal to overcome the difficulty of finding suf-
ficient amount of “worthy” neighbors. We presented a detail
analysis of the two approaches showing how DAEDALUS
can be used to improve swarm survival in an online environ-
ment.

Future work of this research will focus on the issue of
credit assignment, when fitness feedback is sporadic. Cur-
rent work in classifier systems uses mechanisms such as
“bucket-brigade” or “profit sharing” to allocate rewards to
individual agents appropriately (Grefenstette 1988). How-
ever, these techniques rely on global blackboards and as-
sume that all agents can potentially act with all others
through a bidding process. We intend to modify these ap-
proaches so that they are fully distributed and appropriate
for online systems.
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