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Abstract— This paper describes our “sandbox” for the study
of multi-asset surveillance, and explores the performance of rule-
based control strategies on this task. In order to maximize the
probability of detection of targets of interest, it is assumed
that the team of unmanned air vehicles (UAVs) must provide
maximum sensory coverage of the terrain. We demonstrate,
however, both through simulation and mathematical analysis,
that this is not always the case.

I. INTRODUCTION

The focus of our research is to design and build rapidly
deployable, scalable, adaptive, cost-effective, and robust net-
works of autonomous distributed assets. The general purpose
for deploying tens to hundreds of such assets can be summa-
rized as “volumetric control.” Volumetric control means mon-
itoring, detecting, reporting, and responding to environmental
conditions within a specified physical region.

In this paper we concentrate on the task of multi-asset
surveillance. We assume there are � UAV assets flying at a
constant altitude over terrain that contains areas of forest and
non-forest. The assets have sensors to detect targets of interest,
and they can determine whether they are over areas of non-
forest or forest. The target sensor cannot penetrate the foliage
– thus, regions of forest are of lower interest than those without
forest. Each asset has a target sensor with a field of view of������� , and may also have a foliage sensor with a field of view
of ���	�
� , where ���
����� . The total area of the region is much
greater than � ������� . The target sensor also has a probability of
detection ��� (which is assumed to be 1.0 in this paper). The
goal is to locate � targets as reliably as possible, within some
time period � . Targets can be stationary or mobile. When they
move they can take advantage of the forest to provide cover for
themselves. Our principal focus will be on whether providing
maximum sensory coverage of the terrain implies maximum
target detection.

II. SURVEILLANCE SANDBOX

In order to study multi-asset surveillance in a methodical
manner, we have created a sophisticated simulation tool called
“SURVE”. SURVE has several modules, including forest
generation, target controllers, asset controllers, a genetic algo-
rithm, and modules for data collection. It can be run in either of
two modes. In learning mode the genetic algorithm can be used

to optimize parameters that are part of some asset controller. In
performance mode SURVE collects data on the performance
of the optimized controller. Our current implementation is in
Java, to allow for cross-platform compatibility.1

A. Forest Generation

Our “world” is a square with sides of length � , and � �
discrete grid points. Grid point ( � ,� ) can contain a tree or
remain barren. We designed the algorithm to mimic a real
forest, such that there are large clusters of trees, yet there
can be holes in the middle. These holes allow assets to view
targets.

The algorithm begins by placing an initial number of trees
in the environment, and then uses the natural process of
“seeding” in order to generate the next phase of the forest.
The process continues until the desired amount of forest is
reached. The controlling parameters of the algorithm are:
��� � - The initial number of trees in the forest.
����� - The distance that seeds can travel.
��� � - The amount of seeds spread during seeding.
��!"� - The decay rate of the seeds.��#�$ - The desired forest coverage.

The algorithm begins by initializing � � trees. The placement
of these trees is uniformly distributed about the world. Rather
than just initializing one square for a clump of trees, we
initialize a cross section, to aid in the development of the
forest, see Figure 1(a). Once the initial trees have been
placed, the next generation begins. For a given generation the
current trees in the population are allowed to seed the areas
surrounding them with a distance of � � . The amount of seed
laid at each position within this circle is defined as � � . The
seeding process can be seen in Figure 1(b). Once everything
has been seeded, we begin selecting positions ( � ,� ) that are
seeded and determine if they become trees, by selecting a
uniformly distributed random number. If the value selected is
less than that of the seeds in the area, then the seeds have
taken hold, and grow to become trees. Using this procedure
not all seeds will become trees; therefore, we apply a decay
to those seeds that have not become trees. Notice that as more
trees surround an area, the greater the probability of growing a

1The learning aspect of SURVE will not be discussed in this paper.



(a) (b)

Fig. 1. Forest seeding algorithm. (a) The initial forest configuration. Notice
that the trees do not represent exactly one square. (b) The seeding portion of
the algorithm. Notice that the overlap receives more seeds and is more likely
to create a new tree.

tree, since it has more seeds. We continue the algorithm until
the desired forest coverage # $ has been achieved.

Setting the parameters is relatively easy, knowing that at
full seed strength, we will have perfect circles of trees of
size ��� . As we decrease � � we begin getting more sparsely
populated forests because our seeds are not as hearty and
don’t survive. The decay rate provides a mechanism to remove
old seeds from the population of seeds, again protecting us
from realizing perfect circled forests. Figure 2 provides a nice
illustration of our forest generator. In this paper our world is
200 � 200 in size.

Fig. 2. An example forest with 100 targets of interest.

B. Target Controllers

Targets can either be stationary or mobile. When they move
they try to cross the environment by moving from the left to the
right. We are currently creating controllers modeled after real-
life scenarios, as found in the Department of the Army’s Field
Manual “Tank and Mechanized Infantry Company Team” [12].
In this paper we will focus on one target controller, called
“Gollum”.

Gollum is a “sneaky” target controller that attempts to cross
the environment by greedily (and locally) choosing a path with
maximum foliage, so that the time a target spends exposed to
the assets’ sensors is minimized. To achieve the effect, each
target has a foliage sensor with two attributes, a foliage radius
and a foliage angle, which define how far and how wide the
foliage sensor scans the environment ahead of the target to
find foliage. In the absence of foliage, each target will move
horizontally toward the right edge. However, when foliage is
detected, the target will alter its course to reach the foliage
cover. Once in the foliage, the target will again continue
moving toward the right edge, and attempt to stay within the
foliage as long as possible. In this paper, the target foliage
sensor radius is 10, and the foliage sensor angle is

�����
, so that

the sensor scans ��� � � and 	
� � � away from the horizontal.
These values yield a good trade-off between seeking foliage
cover and avoiding large detours in target paths.

Figure 2 shows areas of forest, and 100 targets. The triangle
represents a target that has not yet been seen but is visible,
and the “ � ” represents a hidden target that has not been seen.
The simulation also uses a “+” to represent a target that has
been seen and is visible, and a “ � ” to represent a target that is
currently hidden but has been previously seen (the latter two
are not shown in this figure).

C. Rule-Based Asset Controllers

We have implemented three rule-based asset controllers.
The first, called “Straight Line” (SL), is our simple base
controller that moves in a straight line at velocity � . When the
environment wall is hit, the asset rebounds such that the angle
of reflection equals the angle of incidence. This extremely
simple asset controller does not have a foliage sensor.

To illustrate the behavior of the SL controller, we monitored
the “asset map” achieved by this asset strategy. This map
shows locations that were seen by at least one of the assets
during the given surveillance period. Areas with frequent
sensor coverage are denoted by bright white areas, and areas
that were observed less frequently are shown in darker hues,
with black areas receiving no target sensor coverage at all.
Since the target sensor can not penetrate foliage, the forested
areas are also black, regardless of whether assets flew over
those areas. The sample environment used for this set of
experiments is shown in Figure 2.

As can be seen in Figure 3, SL-controlled assets can achieve
uniform world coverage, given a moderate number of assets
(ten assets appears to be enough to achieve this effect for many
sets of initial conditions). However, one weakness is that assets
spend time over foliage, which is not productive.



Fig. 3. Sensor coverage with the SL strategy after 1,000 steps.

As a consequence we also implemented a “Straight Line
Avoid Forest” (SLAF) controller. This controller extends SL
by presuming the presence of a foliage sensor, which allows
the asset to avoid spending valuable surveillance time over
forested areas, where target sensors are ineffective. The only
information that is assumed to be available from this simple
foliage sensor is the percentage of the sensor view field
occupied by the foliage. Once that percentage exceeds a certain
threshold (currently set at 50%), the asset will reverse its
direction and will move away from the edge of the forest.
Should the asset be initially deployed directly over the foliage,
it will continue moving in its initial direction until it leaves
the foliage, or an interaction with a world boundary causes it
to turn around; in either case, given sufficient time, the asset
will end up in a foliage-free location.

Fig. 4. Sensor coverage with the SLAF strategy after 1,000 steps.

As can be seen in Figure 4, SLAF-operated assets frequently
move in a short, localized pattern, and fail to achieve uniform

sensor coverage regardless of the amount of time the surveil-
lance activity is carried out.

To address the poor coverage of SLAF, we finally im-
plemented a “Super Straight Line Avoid Forest” (SSLAF)
controller that utilizes a more sophisticated foliage sensor.
Upon detecting an increased amount of foliage within its
sensor (current threshold is set at 10%), the asset will enter
an “avoid forest” state, computing the mass distribution of the
sensed foliage and moving in the direction exactly opposite the
center of foliage mass. Once the detected foliage drops below
the threshold, the asset will switch into its normal surveillance
state, continuing to move in its current direction until an
encounter with another patch of foliage or a bounce from an
environment boundary occurs. This strategy was inspired by
Reynolds [8] and Balch [2].

Fig. 5. Sensor coverage with the SSLAF strategy after 1,000 steps.

As can be seen in Figure 5, SSLAF-controlled agents tend to
achieve a far more more comprehensive sensor coverage than
SLAF, and they achieve this faster than do SL-based assets
(as indicated by the brighter coverage of SSLAF versus SL).

III. RESULTS WITH STATIONARY TARGETS

We first tested the SL, SLAF, and SSLAF asset controllers
with environments containing 100 stationary targets. The target
radius ������� , while the foliage radius �	����� . Regardless of
controller, all assets moved at speed � � � . The percentage
of foliage varied from 0% to 70% in increments of 10%.
The performance metric is the percentage of targets spotted
within � ��� � � times steps, given that these targets were in
fact visible. For each percentage of foliage 100 forests were
randomly generated, and for each of the forests the results
were averaged over 50 runs with different target and initial
asset placements.

Tables I and II give the performance of the three asset
controllers, with � ��� � and � � � � assets. With 0% foliage,
all controllers perform equivalently, since the foliage sensors
have no function to perform. Also, the performance of SL



TABLE I

PERCENTAGE OF STATIONARY TARGETS FOUND (10 ASSETS)

Foliage (%) SL SLAF SSLAF
0 41.18 41.18 41.18
10 39.05 22.47 39.87
20 41.25 20.09 41.11
30 39.25 17.43 43.12
40 38.98 15.83 44.53
50 40.67 17.73 50.19
60 41.35 18.19 54.57
70 39.98 20.13 57.58

TABLE II

PERCENTAGE OF STATIONARY TARGETS FOUND (30 ASSETS)

Foliage (%) SL SLAF SSLAF
0 79.52 79.52 79.52
10 79.71 54.30 75.73
20 79.33 48.07 77.67
30 78.14 44.06 77.63
40 78.54 43.01 79.55
50 78.86 43.78 81.25
60 79.07 44.22 84.05
70 77.27 47.46 84.49

is independent of the percentage of foliage, since it has no
foliage sensor. In general, SSLAF outperforms SL, especially
as the percentage of foliage increases. This is a consequence
of the fact that SL wastes time over areas of foliage. Finally,
as expected, SLAF performs poorly, due to its lack of ability
to provide uniform coverage of the environment.

IV. RESULTS WITH MOVING TARGETS

For the next set of experiments we allowed the targets to
move according to their “Gollum” controller. Target speed was
0.4, with all other experimental variables fixed as before.

TABLE III

PERCENTAGE OF GOLLUM TARGETS FOUND (10 ASSETS)

Foliage (%) SL SLAF SSLAF
0 32.28 32.28 32.28
10 29.78 29.63 31.35
20 25.46 26.50 29.04
30 23.09 25.60 28.47
40 18.59 22.72 24.02
50 17.45 23.10 24.85
60 14.54 21.93 22.39
70 13.61 23.11 23.10

Tables III and IV give the performance of the three asset
controllers, with � � � � and � � � � assets. Again, with 0%
foliage, all controllers perform equivalently, since the foliage
sensors have no function to perform. However, in general, the
task is clearly more difficult. This is a consequence of the
Gollum controller, where targets actively seek out foliage for
cover. As expected, SSLAF still outperforms SL. However,
the results with SLAF look anomalous. With moving targets
SLAF performs roughly equivalently to SSLAF (and in fact

TABLE IV

PERCENTAGE OF GOLLUM TARGETS FOUND (30 ASSETS)

Foliage (%) SL SLAF SSLAF
0 65.02 65.02 65.02

10 64.66 64.10 65.57
20 55.55 56.25 57.27
30 51.13 54.79 54.52
40 45.01 51.05 50.55
50 39.50 48.46 47.36
60 36.61 48.47 46.67
70 30.78 45.75 40.90

outperforms SSLAF when there are a large number of assets
and the percentage of foliage is high)!

Recall that our initial motivation for creating the behavior
of our asset controllers was predicated on the belief that max-
imum sensor coverage of the domain implies maximum target
detection. For stationary targets, this belief was validated.
However, as soon as the targets start to move (with a speed that
is quite slow relative to the asset speed), an asset controller
with extremely poor domain coverage provides very good
target detection. The next section provides a mathematical
analysis of why this occurs.

V. ANALYSIS

Informally, one can start to understand the error in our belief
if one notices that the belief was grounded in spatial reasoning.
Clearly, for stationary targets, uniform coverage of the space
is necessary (if one assumes the targets also are uniformly
distributed throughout the space). The asset map shown in
Figure 4 clearly indicates that vast portions of the domain are
unexplored, leading to poor target detection.

Fig. 6. Gollum target coverage over 1,000 steps.

However, once targets move, spatial reasoning must be
combined with temporal reasoning. To illustrate this, Figure 6
shows a “target map” illustrating the movement of the Gollum
targets over time, as the targets move from left to right through



the environment. The passage of targets through foliage are not
shown, since they are not visible to the assets during that time.
One can notice that a clump of foliage provides a “focusing”
effect that changes the density of targets (along a column)
from uniform to highly non-uniform.

For the sake of target detection, it can be seen that if one
mentally overlays Figures 4 and 6, all that is really required
for detection is an intersection between the target paths and the
asset paths, at the same moment in time. Although the target
and asset maps provide spatial information, their intersection
in time is not represented. For this we will require some
probabilistic analysis.

First, for the sake of tractability, we assume that the � �
�
environment contains no forest, and that � targets are crossing
the environment horizontally from left to right. We consider
four situations: (A) an asset is bouncing back and forth in the
domain along the horizontal, (B) an asset is bouncing along
the vertical, (C) an asset is bouncing along the major diagonal,
and (D) an asset is bouncing in such a way as to uniformly
cover the space. We will then compute the expected number
of targets that the asset will detect. Note that the situations are
specifically designed to differentiate between a highly uniform
coverage of the space versus a highly non-uniform coverage.

A. Horizontal Movement

This situation is the easiest to analyze. If one asset has target
radius � � , then it will sweep a row with height � � � . If � targets
are uniformly distributed along the left-most column as they
start their movement, then the asset will detect � � � � � targets.
If there are � assets with non-overlapping horizontal paths,
then the expected number of targets detected is:

� � ���
� (1)

Note that the velocity of the asset is not relevant for this
particular situation. The velocity of the target must be greater
than zero.

B. Vertical Movement

Again, assume the asset has target radius � � . It will sweep
a column of width ! � � � � . Assume for the sake of simplicity
that the velocity of the asset � � � � � , so that overlap does
not occur. Then the number of steps required for the asset to
traverse the column ��� � � � ! 	 � . Thus, any grid point in
the column is hit with a probability approximated by �

� ��� ,
and is not hit with probability approximated by � ��� 	 ��� � ��� .
Finally, we need to calculate how long a target will be within
that column. If the speed of the target is � � , then the target
will require � � � ! � � � steps to cross the column. Hence the
probability of that target not being detected is approximately��� � � 	 ��� � � � �
	�� . Finally, the expected number of targets
detected is approximately:

�


� 	�� ��� 	 �� � � 	 ��� (2)

If there are � independent assets then the number of targets
detected is:

�


� 	�� ��� 	 �� � � � 	�� � (3)

C. Diagonal Movement

This situation is a small transformation of vertical move-
ment. Since moving along the diagonal is a factor of � �
longer than moving along the column, both � � and � � must
be renormalized. In this situation ���� � � � � � ! 	 � and
���� � � � ! � � � . If there are � independent assets then the
number of targets detected is:

�


� 	�� ���� 	 �� �� � � 	��� � (4)

D. Uniform coverage

Finally, if an asset is uniformly covering the domain then
��� �� � � � � ��� � � and ��� �� � � � � � . If there are � independent
assets then the number of targets detected is:

�


� 	�� ��� �� 	 �� � �� � � 	 � �� � (5)

E. Theory versus Simulation

For confirmation of the theory, we ran SURVE with 100
Gollum targets, no forest, asset speed � � � � , target radius� � � � , and target speed � � � ��� �

. The number of assets were
one, two, and four.

TABLE V

EXPECTED NUMBER OF TARGETS DETECTED� Horizontal Vertical Diagonal Uniform
1 5 74 73 62
2 10 93 92.9 86
4 20 99.6 99.5 98

TABLE VI

ACTUAL NUMBER OF TARGETS DETECTED� Horizontal Vertical Diagonal Uniform
1 5 73 77 63
2 10 91 93 86
4 18 98 99 98

Table V shows the theoretical results from the above equa-
tions, for the four situations. Table VI shows the empirical
results, averaged over 1000 runs. The empirical results agree
very well with the theoretical results, and are quite informative.
First, as might be expected, horizontal movement of the asset
yields the poorest performance (assuming that targets are
also moving horizontally). However, column movement and
diagonal movement definitely outperform uniform coverage!
Hence, although uniform coverage is excellent for stationary
targets, this strategy is suboptimal for moving targets. If one



re-examines the asset map shown in Figure 4, one can clearly
see the long vertical movements that are yielding the good
performance of SLAF. The diagonal asset control strategy is
especially interesting, since it will work well regardless of
whether targets cross the domain horizontally or vertically.

VI. SUMMARY

This paper presents the SURVE toolkit for experiments in
multi-asset surveillance. SURVE has several modules, includ-
ing forest generation, target controllers, asset controllers, a
genetic algorithm, and modules for data collection. Due to
the efficiency of implementation, SURVE can be run with
hundreds of assets and thousands of targets. We then present
evidence that although the goal of uniform coverage of a
domain is excellent for detecting stationary targets, it is
suboptimal for moving targets. Theoretical analysis confirms
the empirical results, indicating that specialized patterns of
surveillance will outperform more generalized uniform cover-
age.

Prior work in this area includes Wu et. al., who used the
SAMUEL learning system to evolve rule sets that control a set
of micro-air vehicles (MAVs) to provide maximum coverage
of a region [13]. Wu expanded on this by combining chunk-
ing with a GA to increase performance [14]. Independently,
Bugajska combined SAMUEL with a GA to find an optimal
sensor suite and reactive rules [3], and combined SAMUEL
with ACT-R to provide a cognitive model [4]. Sukhatme
et. al. have used a behavior-based approach to surveillance
with cooperative aerial and ground vehicles [11]. Albekord
et. al. summarize a multi-tiered control strategy for multiple-
asset surveillance, utilizing both air and ground vehicles [1].
Spears et. al. discuss a physics-based distributed algorithm for
controlling swarms of UAVs for surveillance [9], [10]. Pack
and Mullins propose a method for searching an area according
to four basic search rules, in order to provide complete
coverage of the domain [7]. Finally, Krishna et. al. provide
a surveillance system based on multiple mobile sensors [6].
Interestingly, this latter paper uses an “X” formation of assets,
where the assets are placed along both major diagonals of the
environment. However, these papers do not provide theoretical
justification for the behavior of the assets.

We are currently attempting to generalize our theoretical

analysis to include forest distributions. The eventual goal
is to formally merge the spatial asset and target maps into
a temporal construct that is predictive of target detection
probability, allowing us to construct optimal asset strategies
for given target controllers.
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