
To The Graduate School:

The members of the Committee approve the thesis of Suranga D. Hettiarachchi
presented on September 5, 2007.

William M. Spears, Chairman

Diana F. Spears,

Thomas A. Bailey Jr.

Richard C. Anderson-Sprecher

David R. Thayer

APPROVED:

Jeffrey Van Baalen, Head, Department of Computer Science

Don Roth, Dean, The Graduate School

Hettiarachchi, Suranga D., Distributed Evolution for Swarm Robotics, Ph.D.,
Department of Computer Science, December 2007.

Traditional approaches to designing multi-agent systems are offline, in simula-

tion, and assume the presence of a global observer. Artificial Physics (AP) or

physicomimetics (Spears and Gordon 1999) can be used to self-organize swarms

of mobile robots into formations that move towards a goal. Using an offline ap-

proach, we extend the AP framework to moving formations through obstacle fields.

We provide important metrics of performance that allow us to (a) compare the utility

of different generalized force laws in the artificial physics framework, (b) examine

trade-offs between different metrics, and (c) provide a detailed method of comparison

for future researchers in this area.

In the online, real world, a global observer may be absent, performance feedback

may be delayed or perturbed by noise, agents may only interact with their local

neighbors, and only a subset of agents may experience any form of performance feed-

back. Under these constraints, designing multi-agent systems is difficult. We present

a novel approach called“Distributed Agent Evolution with Dynamic Adaptation to

Local Unexpected Scenarios” or DAEDALUS to address these issues, by mimicking

more closely the actual dynamics of populations of agents moving and interacting in

a (task) environment.

This thesis merges DAEDALUS and AP by using obstacle avoidance as a case

study to illustrate the feasibility of DAEDALUS when the environment changes. We

present empirical and practical results that address (a) offline vs. online learning, (b)

obstructed perception, (c) homogeneous vs. heterogeneous agent cooperation, and

(d) implementation of obstacle avoidance with real robots.

1

DISTRIBUTED EVOLUTION FOR SWARM ROBOTICS

by
Suranga D. Hettiarachchi

A thesis submitted to the Department of Computer Science
and the Graduate School of the University of Wyoming

in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

Laramie, Wyoming
December 2007

ii

Copyright 2007 Suranga D. Hettiarachchi

All Rights Reserved

iii

DEDICATION

This thesis is dedicated to my mother Malinie, father Premadasa, and my two

sisters, Priyanka and Kanchana.

iv

ACKNOWLEDGMENTS

This thesis is the result of my four and a half years of research for obtaining my degree

in Computer Science. This is not just my own journey; I have been accompanied and

supported by so many people who I admire the most. I would like to take this

opportunity to extend my heartiest gratitude to all of them.

Let me thank my advisor Dr. William M. Spears for his steadfast support and

encouragement. His passionate dedication to science, constant flow of ideas, and

conviction to hold higher standards inspire and enrich me as a student, teacher,

researcher and a scientist that I want to be. I am truly indebted to him for opening

up a whole new world for me and, of course, for funding me.

I would also like to thank Dr. Diana F. Spears for first taking me in as a Ph.D.

student and laying a solid foundation for my long and arduous battle for a Ph.D. I

am grateful to her for introducing me to Dr. William M. Spears and continuously

supporting me to become a better researcher.

Many thanks to the rest of my committee members, Dr. Thomas Bailey, whose

immense knowledge in physics made me less dependent on physics books at the library,

and Dr. Richard C. Anderson-Sprecher and Dr. David R. Thayer who gave me

valuable suggestions for improvements.

I am grateful to Ms. San Dee Hutton, Mr. Shawn McGinnis, and Ms. Do-

lores McGinnis for being the most supportive friends of mine, and the University of

Wyoming for supporting me with scholarships. Also, I like to acknowledge great ideas

and collaborations by all of my colleagues, especially Paul, Dimitri, Wes, Derek, Tom

and Caleb, at the University of Wyoming, Distributed Robotics Laboratory.

v

TABLE OF CONTENTS

Page

List of Figures ix

List of Tables xvi

1 Introduction 1
1.1 Introduction . 1
1.2 Swarm Robotics . 4
1.3 Our Objectives . 5
1.4 Swarm Tasks . 7

1.4.1 Search and Rescue . 7
1.4.2 Surveillance . 8
1.4.3 Chemical Plume Tracing (CPT) 9
1.4.4 Terrain Mapping . 9
1.4.5 Land Mine Detection . 9
1.4.6 Task Environments . 10

1.5 Obstacle Avoidance . 11
1.6 Contributions . 13
1.7 Preview . 14

2 Related Work 15
2.1 Introduction . 15
2.2 Behavior-based and Rule-based Swarm Robotics 15
2.3 Potential Fields . 17
2.4 Control Theoretic Swarm Robotics 18
2.5 Physicomimetics Approaches . 18
2.6 Obstacle Avoidance . 19
2.7 Summary . 21

3 Physicomimetics 23
3.1 Introduction . 23
3.2 Physicomimetics Approach . 24
3.3 Newtonian Force Law . 26

vi

3.4 Lennard-Jones (LJ) Force Law . 27
3.5 Summary . 29

4 Evolutionary Learning 31
4.1 Introduction . 31
4.2 Evolutionary Algorithms . 32

4.2.1 Representation of an Individual 34
4.2.2 Fitness Evaluation . 35
4.2.3 Genetic Operators . 35
4.2.4 Selection . 37

4.3 EA for Obstacle Avoidance . 38
4.3.1 Simulation Architecture . 39
4.3.2 Obstacle Avoidance Simulation Tool 41

4.4 Fitness Evaluation for Obstacle Avoidance 45
4.4.1 Pareto Optimization . 46
4.4.2 Fitness Evaluation . 47
4.4.3 Penalty for Collisions . 47
4.4.4 Penalty for Lack of Cohesion 48
4.4.5 Penalty for Robots not Reaching the Goal 48
4.4.6 Offline vs. Online Learning 49

4.5 Parameter Optimization . 49
4.5.1 Methodology . 50
4.5.2 Optimizing Newtonian Force Law 51
4.5.3 Optimizing LJ Force Law . 55

4.6 Summary . 58

5 Offline Performance 60
5.1 Introduction . 60
5.2 Methodology . 61
5.3 Performance Metric . 62
5.4 Newtonian Experimental Results . 64

5.4.1 Solid Behavior . 67
5.5 LJ Experimental Results . 67

5.5.1 Fluid Behavior . 69
5.6 Further Analysis of Force Laws . 71
5.7 Safety Zone . 73

5.7.1 Newtonian Experimental Results 74
5.7.2 LJ Experimental Results . 75
5.7.3 Further Analysis of Safety Zone 76

5.8 Summary . 76

vii

6 Online Learning 80
6.1 Introduction . 80
6.2 Constraints With Offline Learning . 81
6.3 Distributed Agent Evolution with Dynamic Adaptation to Local Un-

expected Scenarios - DAEDALUS . 82
6.3.1 Distributed Evolution . 83
6.3.2 DAEDALUS for Obstacle Avoidance 84

6.4 Transition from Offline to Online Learning 84
6.4.1 Methodology . 85
6.4.2 Collision Avoidance . 86
6.4.3 Experimental Results . 87

6.5 Survivability . 88
6.5.1 Methodology . 88
6.5.2 Experimental Results . 89
6.5.3 Difficulty of Survival . 90

6.6 Summary . 90

7 Obstructed Perception 92
7.1 Introduction . 92
7.2 Learning Dynamic Environments with Obstructed Perception 93
7.3 Diversity in Swarms . 94

7.3.1 Homogeneous Swarms . 96
7.3.2 Heterogeneous Swarms . 96

7.4 Swarm Learning Methodology with Obstructed Perception 97
7.4.1 Experimental Results . 98

7.5 Homogeneous Swarm Learning - Experimental Results 101
7.6 Heterogeneous Swarm Learning - Experimental Results 102

7.6.1 Extended Heterogeneous DAEDALUS Results 103
7.7 Effect of Mutation in Swarm Learning 105
7.8 Summary . 106

8 Hardware Implementation 108
8.1 Introduction . 108
8.2 Hardware Considerations . 109
8.3 Hardware Configuration . 110

8.3.1 Maxelbot Robots . 110
8.3.2 Sensor Characteristics . 111
8.3.3 Obstacle Avoidance Module 113

8.4 Experimental Results . 114
8.4.1 Control Algorithm: AP-lite 115
8.4.2 Methodology . 119
8.4.3 Formation Control . 119

viii

8.4.4 Obstacle Avoidance . 122
8.4.5 Further Analysis of Data . 125

8.5 Summary . 128

9 Conclusion 130
9.1 Accomplishments . 130
9.2 Contributions . 131
9.3 Future Directions . 133

Appendix I: Complete Results of Reachability for Offline Learning 138

Appendix II: Complete Results of Connectivity for Offline Learning 151

Appendix III: Complete Results for Newtonian and LJ Force Laws with
a Safety Zone for Offline Learning 164

Bibliography 179

ix

LIST OF FIGURES

Figure Page

1.1 Shakey the Robot. 2
1.2 Predator B-2 Unmanned Aerial Vehicle. 3
1.3 Four Maxelbots maintain a diamond formation in outdoor terrain. . . 6
1.4 Group of robots in a simulated environment. 12
1.5 Group of robots in a highly structured lab environment - Oak Ridge

National Laboratory. 12

3.1 How circles can create hexagons. 24
3.2 Robots R and R4 undergo a perturbation to their positions due to

forces from other robots and the environment. Robot R4 does not
sense forces from robots R1 through R3 due to sensor proximity. . . . 25

3.3 Interaction potential of LJ with ε = 1 and σ = 1. 28
3.4 Pseudocode of the physicomimetics algorithm that uses the LJ force

law for robot-robot interactions. 30

4.1 Typical EA pseudocode. 33
4.2 Pseudocode of Gaussian mutation. 37
4.3 Pseudocode of stochastic universal sampling for fitness proportional

selection. 38
4.4 The architecture of the simulation tool. 39
4.5 The top level pseudocode of our obstacle avoidance EA. 41
4.6 Simulated tool for obstacle avoidance task 42
4.7 40 robots moving to the goal. The larger circles represent obstacles,

while the square in the upper right represents the goal. 51
4.8 Evolved Newtonian force law for robot-robot interactions. 53
4.9 Evolved Newtonian force law for robot-obstacle interactions. 54
4.10 Evolved Newtonian force law for robot-goal interactions. 54
4.11 Evolved LJ force law for robot-robot interactions. 56
4.12 Evolved LJ force law for robot-obstacle interactions. 57
4.13 Evolved LJ force law for robot-goal interactions. 58

5.1 Traditional offline approach of evolving force law rules. 61

x

5.2 Performance metric; seven robots in a hexagonal lattice over the goal. 64
5.3 Fifty robots navigating around a large obstacle toward a goal. Robots

maintain full connectivity while avoiding the obstacle by acting as a
viscous fluid, using the LJ force law. 70

5.4 Change in connectivity over 2000 time steps for 20 and 100 robots
through 100 obstacles using the Newtonian and LJ force laws. 71

5.5 Percentage of 20 and 100 robots reaching goal through 100 obstacles
over 2000 time steps using the Newtonian and LJ force laws. 72

5.6 Three layered safety zone. The obstacle is represented as a black circle
in the middle, and r is the distance from a robot to the center of the
obstacle. 74

5.7 Change in connectivity over 2000 time steps for 20 and 100 robots
through 100 obstacles using Newtonian and LJ force laws with a safety
zone around obstacles. 77

5.8 Percentage of 20 and 100 robots reaching goal through 100 obstacles
over 2000 time steps using Newtonian and LJ force laws with a safety
zone around obstacles. 77

6.1 A long corridor with randomly placed obstacles and five goals. 85
6.2 60 robots moving to the goal. The larger circles represent obstacles,

while the square in the upper right represents the goal. The larger
obstacles make this environment far more difficult for the robots to
traverse. 86

6.3 The ratio of colliding robots versus the number of surviving robots for
60 robots moving through 5 goals with 90 obstacles in between each
goal. 87

6.4 A comparison of (a) the number of robots that survive when rules are
learned using offline learning, (b) the number of robots that survive
when using online learning (where the focus is on reducing collisions),
and (c) the number of robots that survive when using online learning
(and the focus is on survivability). 89

7.1 The sensing capability of two robots (A, B) is obstructed by a large
obstacle (C). 94

7.2 Four different experiments of number of robots surviving. All robots
are trained with obstructed perception and tested with and without
DAEDALUS. The results are averaged over 100 independent runs. . . 100

7.3 Five different mutation experiments of robots surviving. All robots are
trained with obstructed perception and tested with DAEDALUS. The
results are averaged over 100 independent runs. 103

xi

7.4 Number of robots surviving with predefined mutation rates. The mu-
tation rates are not exchanged. All robots are trained with obstructed
perception and tested with or without DAEDALUS. The results are
averaged over 100 independent runs. 104

7.5 Number of robots surviving with predefined mutation rates. The mu-
tation rates are exchanged. All robots are trained with obstructed
perception and tested with or without DAEDALUS. The results are
averaged over 100 independent runs. 105

8.1 Hardware modules of Maxelbot robot. 111
8.2 GP2D12 sensor output voltage with distance to objects. 112
8.3 Function to convert raw sensor readings to inches. 113
8.4 Top view of a Maxelbot robot with the OAM and MiniDRAGONs for

trilateration and motor control. 114
8.5 Pseudocode of the AP-lite. 117
8.6 Pseudocode of the turn function. 118
8.7 Positioning of sensors on the front of a Maxelbot. 118
8.8 Three Maxelbots in triangular formation; distances shown are initial x

and y positioning. 120
8.9 Change in position of two follower Maxelbots in triangular formation. 121
8.10 Three Maxelbots in linear formation; distances shown are initial x and

y positioning. 122
8.11 Change in position of two follower Maxelbots in linear formation. . . 123
8.12 Correlation between the right-most sensor, S0, and the power to the

left motor. 124
8.13 Correlation between the left-most sensor, S3, and the power to the

right motor. 124
8.14 Correlation between the two middle sensors, S1 and S2, and the power

to the left and right motors. 125
8.15 Correlation between the right-most sensor, S0, and the power to the

left motor. 127
8.16 Correlation between the left-most sensor, S3, and the power to the

right motor. 127
8.17 Correlation between the two middle sensors, S1 and S2, and the power

to the left and right motors. 128

9.1 Change in reachability over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws 138

9.2 Change in reachability over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws 139

9.3 Change in reachability over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws 139

xii

9.4 Change in reachability over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws 140

9.5 Change in reachability over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws 140

9.6 Change in reachability over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws 141

9.7 Change in reachability over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws 141

9.8 Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws 142

9.9 Change in reachability over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws 142

9.10 Change in reachability over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws 143

9.11 Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws 143

9.12 Change in reachability over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws 144

9.13 Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws 144

9.14 Change in reachability over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws 145

9.15 Change in reachability over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws 145

9.16 Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws 146

9.17 Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws 146

9.18 Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws 147

9.19 Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws 147

9.20 Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws 148

9.21 Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws 148

9.22 Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws 149

9.23 Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws 149

9.24 Change in reachability over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws 150

xiii

9.25 Change in reachability over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws 150

9.26 Change in connectivity over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws 151

9.27 Change in connectivity over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws 152

9.28 Change in connectivity over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws 152

9.29 Change in connectivity over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws 153

9.30 Change in connectivity over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws 153

9.31 Change in connectivity over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws 154

9.32 Change in connectivity over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws 154

9.33 Change in connectivity over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws 155

9.34 Change in connectivity over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws 155

9.35 Change in connectivity over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws 156

9.36 Change in connectivity over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws 156

9.37 Change in connectivity over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws 157

9.38 Change in connectivity over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws 157

9.39 Change in connectivity over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws 158

9.40 Change in connectivity over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws 158

9.41 Change in connectivity over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws 159

9.42 Change in connectivity over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws 159

9.43 Change in connectivity over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws 160

9.44 Change in connectivity over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws 160

9.45 Change in connectivity over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws 161

xiv

9.46 Change in connectivity over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws 161

9.47 Change in connectivity over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws 162

9.48 Change in connectivity over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws 162

9.49 Change in connectivity over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws 163

9.50 Change in connectivity over 2000 time steps for 100 robots through
100 obstacles using Newtonian and LJ force laws 163

9.51 Change in reachability over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone . . . 165

9.52 Change in reachability over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone . . . 166

9.53 Change in reachability over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone . . . 167

9.54 Change in reachability over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone . . . 167

9.55 Change in reachability over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone . . . 168

9.56 Change in reachability over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone . . . 168

9.57 Change in reachability over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone . . . 169

9.58 Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone . . . 169

9.59 Change in reachability over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone . . . 170

9.60 Change in reachability over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone . . . 170

9.61 Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone . . . 171

9.62 Change in reachability over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone . . . 171

9.63 Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone . . . 172

9.64 Change in reachability over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone . . . 172

9.65 Change in reachability over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone . . . 173

9.66 Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone . . . 173

xv

9.67 Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone . . . 174

9.68 Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone . . . 174

9.69 Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone . . . 175

9.70 Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone . . . 175

9.71 Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone . . . 176

9.72 Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone . . . 176

9.73 Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone . . . 177

9.74 Change in reachability over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone . . . 177

9.75 Change in reachability over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone . . . 178

xvi

LIST OF TABLES

Table Page

4.1 An individual is represented as n real numbers. 35
4.2 Before and after bit-flip mutation of a bit-string representation. . . . 36
4.3 Before and after two-swap mutation of an integer representation. . . . 36
4.4 Before and after Gaussian mutation of a real-value representation. . . 36
4.5 The range of values for the Newtonian parameters. 52
4.6 The range of values for the LJ parameters. 56

5.1 Number of robots that collided with obstacles using the Newtonian
force law. 65

5.2 Minimum number of robots that remain connected using the Newto-
nian force law. 65

5.3 Percentage of robots reaching the goal using the Newtonian force law. 65
5.4 Time taken by 80% of robots to reach the goal using the Newtonian

force law. 66
5.5 Number of robots that collided with obstacles using the LJ force law. 67
5.6 Minimum number of robots that remain connected using the LJ force

law. 68
5.7 Percentage of robots reaching the goal using the LJ force law. 68
5.8 Time taken by 80% of robots to reach the goal using the LJ force law. 69
5.9 Percentage of robots reaching the goal using Newtonian force law and

safety zone. 75
5.10 Time taken by 80% of robots to reach the goal using Newtonian force

law and safety zone. 75
5.11 Percentage of robots reaching the goal using LJ force law and safety

zone. 75
5.12 Time taken by 80% of robots to reach the goal using LJ force law and

safety zone. 76
5.13 Summary of results for 40 – 100 robots, with 100 obstacles. 78

7.1 The number of robots that survive to reach a goal and their mutation
rates. 106

xvii

9.1 Percentage of robots reaching the goal using Newtonian force law . . 164
9.2 Time taken by 80% of robots to reach the goal using Newtonian force

law . 164
9.3 Percentage of robots reaching the goal using LJ force law 165
9.4 Time taken by 80% of robots to reach the goal using LJ force law . . 165

Chapter 1

Introduction

1.1 Introduction

Accomplishing complex tasks within the field of robotics has traditionally involved ex-

pensive, remotely controlled individual robots. These robots are typically developed,

trained, and tested in highly structured environments with predefined and unchang-

ing conditions. This approach is unsatisfactory for at least two important reasons.

First, as the requirements of missions and tasks increase in complexity the cost of

these types of robots rapidly becomes prohibitive. Second, when these robots are

exposed to novel environments with conditions for which they have not trained, they

tend to meet with catastrophic failures.

One of the earliest ancestors of this type of robot was developed at the Artificial

Intelligence Center at Stanford Research Institute in the late 1960s. This robot,

dubbed Shakey for its wobbly gait (see Figure 1.1), was tested in specially prepared

rooms filled with large painted obstacles. Using a black-and-white on-board camera

as a primary sensor and an off-board computer which analyzed the visual input from

the camera and translated it into first order predicate calculus, Shakey navigated

from room to room attempting to achieve goals it received by teletype. The success

of this robot was due in great part to the carefully engineered environment and

experiments (Nilsson 1984).

1

2

Figure 1.1: Shakey the Robot.

Since that time, there have been tremendousimprovements in robotic technol-

ogy leading us to modern exampleslike the remotely controlled and astronomically

expensive Predator UnmannedAerial Vehicle (UAV) seenin Figure 1.2. Developed

by GeneralAtomics Aeronautical Systems,the Predator is a speci�c purposerobot

usedmainly for surveillanceand reconnaissancemissions.The Predator is capableof

real-time distribution of its surveillanceimagerydrawn from synthetic aperture radar

and electro-optical and infrared cameras. This data can be sent to front line com-

mand centers or to any worldwide location via satellite communication links. These

capabilitieshave lead to extensive useof the Predator by the United StatesAir Force

(USAF) owing to recent world events (seeFigure 1.2). The successof the Predator

dependson the e�cien t control of its functions by human operators in ground con-

3

trol stations. Hence,the robots mission is subject to human error and other types

of failures at the control stations. The incredible expenseof this devicemakes the

possibility of such errors a devastating problem.

Figure 1.2: Predator B-2 UnmannedAerial Vehicle.

In thesetraditional approaches,the robot is entirely dependent upon the human

operator. The performancefeedback from human to robot is vital and any delay or

perturbation of this feedback loop could jeopardizethe mission. Without involvement

of the human observer, the robots are incapableof performing a task; consequently,

removing the human global observer could be fatal to the successof the mission. The

lack of autonomy in theserobots is a great causefor worry.

Existing di�culties with traditional approachesto solving problemsusing robots

encourageus to focus on designingrapidly deployable, cost-e�ective, scalable,adap-

tive, and robust swarms of robots. We prefer autonomous,distributed, mobile, sens-

ing robots in our swarms. Our objective is to provide a scienti�c, yet fully practical,

approach to the designand analysisof swarm robotic systems.

4

1.2 Swarm Rob otics

Swarm robotics refers to an approach that makesuseof a large number of physical

robots to solve complexproblems. One of the important aspects of this approach is

that a solution to a problememergesthrough the local interactionsof the robots in the

swarm and the interaction of theserobots with an environment. A large collection of

inexpensiveandhighly capablerobots improvesthe availabilit y of resourcesfor solving

complexproblems. The swarm robotics approach is an improvement over traditional

robotic approaches, providing us with e�ectivenessand robustness. Robot swarms

are highly e�ective, becausethey can perform tasksthat oneexpensive robot cannot.

They are robust in the sensethat if somerobots fail, the swarm can still achieve the

task. Robot swarms provide the following advantages:

� computational e�ciency: the availabilit y of multiple processorsin a swarm

reducesthe computational overheadof onelargeprocessorin an expensive single

robot. We can exploit the concurrencyof computation with multiple processors

in a swarm.

� reliabilit y: swarms are more reliable due to their multiplicit y. Recovery from

component failures is extremely important for missioncritical tasks. A swarm

of robots allows us to accomplishthe mission even when components of some

robots fail.

� extensibility: sincea swarm consistsof multiple robots, we canalter the number

of robots in the swarm and their capabilities. This extensibility allows us to

possiblyaccomplishseveral di�erent tasksin a singlemissionthat a singlerobot

could not provide. It also permits us to increasethe sizeof the swarm giving

the abilit y to explorea larger area.

5

� responsiveness:individual robots in a swarm can act as separatehardware or

software modules;this modularit y allows us to isolateand handleanomalieslo-

cally. The responsivenessof individual robots minimizesthe e�ect of anomalies

propagating into other areasof the swarm.

� maintainabilit y: maintaining a swarm is also easydue to system modularit y.

Individual robots can be removed from a swarm or reintroduced to a swarm

without jeopardizing the e�ectivenessof the task being accomplished.

Figure 1.3 shows a sequenceof snapshotsof four Maxelbot robots developed by the

University of Wyoming Distributed Robotics Laboratory (UW-DRL), moving in an

outdoor terrain while maintaining a diamond formation. Thesefour robots maintain

their formation asa swarm usinga novel physics-basedalgorithm calledAP-lite which

we will discussin Chapter 8.

1.3 Our Ob jectiv es

In our research, we focus on several generalobjectives that may allow us to address

someof the swarm robotic issuesand concerns.There are four generalobjectives:

� synthesize distributed multi-rob ot systemsthat contain tens to thousandsof

robots interacting locally.

� achieve the desiredmacroscopic/globalbehavior through microscopic/local in-

teractions.

� be asunderstandableand predictable as possible.

� achieve desiredbehavior with minimum sensorinformation.

6

Figure 1.3: Four Maxelbots maintain a diamond formation in outdoor terrain.

7

Our speci�c objective within the context of this thesis is to addressthe related

issuesand concernsof a swarm of robots that reachesa goal while avoiding obstacles

and maintaining a cohesive formation, even if the environment changes. Our focus

is to provide an analysisof our speci�c objective that extensively contributes to the

understandingof generalswarm robotics issues.

1.4 Swarm Tasks

Swarm robotic approaches have becomepopular for solving complex tasks due to

the robustnessprovided by multiple robots. Swarm robotic researchers have been

trying to solve complex problems related to many di�erent tasks. Though someof

thesetasks may appear to be trivial to a human, automation of the solution process

using robots is a di�cult and complex problem. We addressseveral tasks that are

important to swarm robotics research.

1.4.1 Search and Rescue

Imagine an earthquake in a large apartment complex? There is massive destruction

of property; many people are trapped in the rubble without any help. The �rst

responders lack resourcesto provide for the needy and begin a search and rescue

mission. The authorities decideto releasea swarm of robots with di�erent capabilities

to provide much neededhelp. Someof the robots search for survivors, while some

others clear rubble. Another group of robots starts moving injured and sick humans

to a central location while a third group of robots beginstreating the injured. This

soundssimilar to a pagefrom science�ction but the recent advancements in swarm

robotics research appear to be solving search and rescuemissionsusing swarms of

robots.

8

The work by the Center for Robot Assisted Search and Rescue(CRASAR) at

the University of South Florida has contributed to the advancement of search and

rescuerobots (Murphy and Burke 2005). Several prototypesof robots developed at

CRASAR are already being usedby �re departments and bomb squads.

Wolf and Chosetat the CarnegieMellon University Robotics Institute have devel-

oped robot prototypesthat are capableof maneuvering through narrow crawl spaces

(Wolf, Brown, Casciola,Costa, Schwerin, Shamas,and Choset 2003). These \Ser-

pentine" manipulators are rich with sensorsand are motivated by the behavior of

snakesand worms. It usesa vision systemto search con�ned environments. One of

the major disadvantagesof the \Serpentine" is its lack of completeautonomy.

1.4.2 Surv eillance

Observation of humans or objects from a distance using electronic equipment has

becomea popular method for gathering information. One of the approaches to ac-

complishingthis surveillancetask is to usemultiple robots asa swarm. Swarm robotic

approaches are recognizedas promising surveillance techniques. Someexamplesof

usesof robotic swarms in surveillance include identifying enemy targets, detecting

unfriendly hazardousevents, and controlling air tra�c. Someof the signi�cant work

in surveillance is done at the UW-DRL by Kerr et al. and Spearset al. Kerr et al.

introducedthe kinetic theory approach to accomplishingthe surveillancetask (Kerr

and Spears 2005) while Spears et al. analyzedrule-basedapproaches to the cover-

age/surveillance tasks using multiple UAVs (Spears,Zarzhitsky, Hettiarachchi, and

Kerr 2005).

9

1.4.3 Chemical Plume Tracing (CPT)

Another task that researchers have been studying is the application of a swarm of

robots toward chemical or biological plume sourcetracing. The task is to rapidly

localizethe emitter usingmultiple robots. Work at UW-DRL hasproducedpromising

results in this area (Zarzhitsky, Spears,Thayer, and Spears2004). This work uses

computational uid dynamic techniquesto localizethe emitter. Prior approachesuse

either chemotaxisin which robots follow the local gradient of the plume concentration

or anemotaxisin which robots areguidedupstreamby the velocity of the plume. The

uxotaxis approach introducedby Zarzhitsky hasproducedsuperior results than the

previoustwo approaches.

1.4.4 Terrain Mapping

Building a map of an unknown terrain is another task that can be accomplished

with a swarm of robots. A swarm of robots with a sensorsuite can be deployed to

create a map of an unknown area. The major advantage of this approach is that

robots can simultaneouslydevelop mapsof non-overlapping regionsmaking this task

lesstime consumingthan trying to accomplishthe samewith a single robot. Huber

et al. at the CarnegieMellon University introduced a new approach to 3-D terrain

mapping using terrestrial rangesensors (Huber and Herbert 1999). Combining this

sensortechnologywith other robotic platforms allowsus to achieve a swarm of terrain

mapping robots.

1.4.5 Land Mine Detection

The objective is to usea collectionof cooperativerobots that aredispersedin a terrain

to locate land mines. Mine detection is a very sensitive and possibly expensive task.

10

Traditional practice is to usehuman subjects (with or without heavy machinery) to

detect and destroy mines in a mine �eld. This approach is extremely risky and time

consuming. It is practical to useinexpensive autonomousrobots to accomplishthis

task. Cooperative robot swarms are even more e�ective, sincethey can explore the

mine �elds in for lesstime.

An advancedrobot systemfor mine detection developed by Fuji Heavy industries

Co. Ltd is a step in the right direction (Aoyama, Ishikawa, Seki,Okamura, Ishimura,

and Satsumi 2007). Their robot consistsof four crawlers and two work arms and is

capableof operating in rough terrain. Several disadvantagesof this robot are limited

deployabilit y, massive size,lack of autonomy, and di�cult y of transporting to remote

locations. Thesedisadvantagesrestrict this robot from being deployed in a swarm.

Cepolina and Zoppi arguethe importanceof developing cost e�ective mine local-

izing robots and introduce four conceptcrawlers for this task (Cepolina and Zoppi

2003). They investigate two methods: (1)transporting a sensorsuite to a mine �eld

by carrying it on a suitable platform similar to Aoyama's work, (2)bringing air sam-

plesfrom a mine �eld to a remotesafelocation. This secondmethod is calledRemote

Explosive Scent Tracing (REST).

1.4.6 Task Environmen ts

There are various types of task environments for testing di�erent tasks. Our focus

is to usewidely acceptedtask environments that are lesscomplex to simulate. The

majorit y of the environments that have beenstudiedarehighly structured and specif-

ically suited to test a single task. It is di�cult to identify and designa generictask

environment to suit all of the tasks that we discussedabove.

Researchershave commonlyusedvarious typesof simulated environments to test

their robot swarms. However, the useof simulations to model robots is often criticized

11

due to their inabilit y to model complex real-world scenarios.We believe that, even

with the limitations of simulated environments, thesemodels are still of great value

in exploring robot behaviors. Simulations can certainly be usedasbasicinvestigative

tools in the study of a complexswarms of robots. Thus, we usesimulations asa �rst

step towards the implementation of a working system.

Figure 1.4 shows a simulation of a simple structured environment wherea swarm

of robots cooperate to accomplisha task. Figure 1.5 shows a highly structured lab

environment wherea swarm of four robots cooperate to accomplisha task (Courtesy

of the Center of Engineering Scienceand Advance Research, Oak Ridge National

Laboratory)

1.5 Obstacle Av oidance

For all the tasks in the previoussections,avoiding obstaclesin the task environment

is extremely important. The phraseobstacleavoidancerefersto combining software

and hardware methodologiesthat intelligently drive robots from onepoint to another

without colliding with other objects in the environment. Our focus is to design,

develop, and implement a swarm of robots that is capableof autonomousnaviga-

tion towards a goal in an obstacle-ladenenvironment while maintaining a hexagonal

lattice formation. If the robots have limited sensorinformation and/or the environ-

ment changeswhile the robots are in the �eld, successfullyaccomplishingthe obstacle

avoidancetask becomesmuch more di�cult. We accomplishformation control, ob-

stacleavoidance,and reaching a goal using techniquesinspired by physical systems.

We are motivated by physicsbecauseaggregatebehaviors seenin classicalphysicsare

potentially reproducible with collectionsof mobile robots. We useour understanding

of classicalphysics to derive the collective behaviors for robots. We do not restrict

12

Figure 1.4: Group of robots in a simulated environment.

Figure 1.5: Group of robots in a highly structured lab environment - Oak Ridge
National Laboratory.

13

ourselves to copying physics precisely, so modi�cations are possible. Our obstacle

avoidance approach is rapidly deployable, distributed, scalable,adaptive and cost

e�ective.

1.6 Con tributions

The work in this thesismakesmany contributions to several areasof swarm robotics

research.

� Improved performancein obstacleavoidance:

{ applied new force law for robot control, to improve performance.

{ provided novel objectiveperformancemetricsfor obstacleavoiding swarms.

{ improved scalability of the swarm in obstacleavoidance.

{ improved performanceof obstacleavoidancewith obstructed perception.

� Invented a real-time learning algorithm (DAEDALUS):

{ demonstrated that a swarm can improve performanceby mutating and

exchanging force laws.

{ demonstratedfeasibility of DAEDALUS with obstacleavoidance,in envi-

ronments three times denserthan the norm.

{ explored the trade-o�s of mutation on homogeneousand heterogeneous

swarm learning.

� implemented hardware:

{ presented a novel robot control algorithm that mergesphysicomimetics

with obstacleavoidance.

14

1.7 Preview

In this thesis, we focus on several issuesrelevant to a swarm of robots moving in

formation while avoiding obstaclesand reaching a goal. Though we are not restricted

to a single task environment, we usea simulation world modeled with generallyac-

ceptedstandardsand present an empirical analysisof our results. We implement a

novel physics-basedcontrol algorithm for robot control and obstacleavoidanceand

present our results with physical robots in an outdoor setting.

In this chapter, we have presented several tasks where obstacle avoidance and

swarm formations are important. In Chapter 2, we explorecurrent trends and alter-

native approaches to solving swarm formation control and obstacleavoidance. We

devote Chapter 3 to presenting two physics-basedforce law algorithms. Chapter 4

explainsour parameteroptimization method for force laws, and our simulation tool.

Chapter 5 provides an empirical analysis of \o�ine learning" using several perfor-

mancemeasurement metrics. In Chapters 6 and 7, we present our novel adaptive

learning algorithm called \D AEDALUS" and explore the e�ect of mutation in the

\online learning" of distributed swarm robotics using heterogeneousrobots. Chap-

ter 8 presents our robot control algorithm (AP-lite), the obstacleavoidancemodule

(OAM), and the results showing the accuracy of AP-lite and OAM using physical

robots.

Chapter 2

Related Work

2.1 In tro duction

Swarm robotic approaches have becomepopular for solving complex tasks due to

robust capabilities provided by multiple robots. We refer to designing,implementing

and testing a swarm of cooperating agents commensurateto somecriterion designed

to producea globaloutcomeof a complextask as\swarm engineering"(Kazadi 2005).

Swarm engineeringapproacheshave beenstudiedand presented in numerousresearch

articles. This chapter presents someof the approaches adopted by researchers for

swarm formation control and obstacleavoidance.

First, wepresent di�erent approachesto swarm formation control such asbehavior-

based, rule-based, potential �elds (PF) , control-theoretic, and physicomimetics. These

approacheshave beenapplied to di�erent swarm tasks. Next, we present more rele-

vant work in the obstacleavoidancearea. Finally, we explain di�erent sensornetwork

approachesfor swarm engineering.

2.2 Behavior-based and Rule-based Swarm Rob otics

Behavior-basedswarm intelligence techniques are ethologically motivated and have

had excellent successwith foraging, task allocation, and division of labor problems.

15

16

Beni et al. introduced the conceptof swarm intelligencewhile studying cellular

robotic systemsin 1989 (Beni and Wang 1989). They investigated the properties

of simulated self-organizingagents in cellular robotic systems. Bonabeau et al. ex-

tended this work providing a rigorous look at the mechanismsunderlying collective

behavior in social insects(Bonabeau,Dorigo, and Theraulaz1999). This work, titled

\Swarm Intelligence: From Natural to Arti�cial Systems"includesattempts to design

distributed cooperative problem-solvingalgorithms inspired by the collective behav-

ior of insect colonies. They present experimental results of several studies related

to foraging, division of labor, clustering and sorting, nest building, and cooperative

transportation tasks. Hayes et at. described a biologically motivated distributed

algorithm called \Spiral Surge" by which a group of collaborating agents can solve

the full odor localization task more e�cien tly than a singleagent (Hayes,Martinoli,

and Goodman 2001). They demonstrated that a group of real robots under fully

distributed control can successfullytraversea real odor plume which is a sub-taskof

odor localization.

Both behavior-basedand rule-basedsystemshave proved quite successfulin ex-

hibiting a variety of behaviors in a heuristic manner. Fredslundand Matari �c studied

the problem of achieving global behavior in a group of distributed robots using only

local sensingand minimal communication, in the context of formations (Fredslund

and Matari �c 2002). The key conceptof their algorithm is that each robot follows a

designated\friend" robot at the appropriate angle and distance using a proximit y

sensorthat can provide the angle and distance information of the friend. By pan-

ning the sensorappropriately, the algorithm simply keepsthe friend centered in the

sensor'sview. They presented their resultsusingfour and eight robots in di�erent for-

mations. Balch and Arkin accomplishedrobot formationsusingthe following two step

process: \detect-formation-position" which is a perceptual processthat determines

17

the robot's position in the formation basedon the current environment data, and

\main tain-formation" which generatesmotor commandsto direct the robot towards

the correct location (Balch and Arkin 1998).

2.3 Poten tial Fields

One of the earliest physics-basedtechniques is the potential �elds approach (e.g.,

(Khatib 1986)). Most of the PF literature dealswith a small number of robots (typ-

ically just one) that navigate through a �eld of obstaclesto get to a target location.

The environment, rather than the robots, exert forces. Obstaclesexert repulsive

forceswhile goalsexert attractiv e forces(Kim and Khosla 1991;Koren and Boren-

stein 1991).

Recently, Howard et al. and Vail et al. extendedPF to include inter-agent repul-

sive forces{ for the purposeof achieving coverage(Howard, Matari �c, and Sukhatme

2002; Vail and Veloso2003). Although this work was developed independently of

physicomimetics framework, it a�rms the feasibility of a physics force-basedap-

proach. Another physics-basedmethod is the \Engineered Collective" work by Dun-

can at the University of New Mexico and Robinett at the Sandia National Lab-

oratory. Their technique has been applied to search-and-rescueand other related

tasks (Schoenwald, Feddema,and Oppel 2001).

The social potential �elds (SPF) framework is highly related to physicomimetics

framework (Reif and Wang 1998). Reif and Wang rely on a force-law simulation that

is similar to the physicomimeticsapproach, allowing di�erent forcesbetweendi�erent

robots. Their emphasisis on synthesizing desired formations by designinggraphs

that have a unique potential energy(PE) embedding. Bruemmer et al. also utilize

the SPF approach as a meansto coordinate group behavior and promote the emer-

18

genceof swarm intelligenceasseenin a colony of ants or swarm of bees(Bruemmer,

Dudenhoe�er, McKay, and Anderson2002).

2.4 Con trol Theoretic Swarm Rob otics

Control-theoretic approacheshave alsobeenapplied e�ectively (e.g., (Fax and Mur-

ray 2002)). Our approach doesnot make the assumptionof having leadersand follow-

ers,as in (Desai, Ostrowski, and Kumar 1998;Desai,Ostrowski, and Kumar 2001).

Fax and Murray consideredthe problem of cooperation among a collection of

vehiclesperforming a shared task using inter-vehicle communication to coordinate

their actions. They applied tools from graph theory to relate the topology of the

communication network to formation stabilit y, and provided a mathematical analysis

to determinethe e�ect of the graph on formation stabilit y.

Desai et al. proposeda method that usesonly local sensor-basedinformation

for leader-follower formation control. Their method usesnonlinear control theory to

achieve formations. They conductedexperiments with several follower robots navi-

gating around an obstaclewith oneor two leaders.They presented their resultswith

oneor more leadersand with oneor two follower(s) moving around a singleobstacle.

2.5 Ph ysicomimetics Approac hes

\Ph ysicomimetics"or arti�cial physics(AP) is anotherswarm robotic approach moti-

vated by classicalphysics. This approach providesexcellent techniquesfor distributed

control of largecollectionsof mobile physical agents aswell astheoretical foundations

for analyzing swarm behaviors. The physicomimeticsframework provides an e�ec-

tivebasisfor self-organization,fault-toleranceand self-repair(Spears,Gordon-Spears,

Hamann, and Heil 2004). Our work is an extensionof the physicomimeticsframe-

19

work provided by Spearset al. A thorough discussionof this framework is provided

in Chapter 3.

Wiegand et al. generalizedphysicomimeticsto extend the power of multi-agent

systemsby specializing particles and their interactions, and they showed the e�ec-

tivenessof this generalizedrepresentation by evolving a solution to a challenging

multi-agent resourceprotection problem (Wiegand, Potter, Sofge,and Spears2006).

Kerr et al. presented two di�erent algorithms based on the physicomimetics

framework, achieving maximal coverage throughout an unexplored corridor (Kerr

and Spears2005). The �rst algorithm is an extensionof the physicomimetics,which

employs virtual repulsive forcesfor multi-agent coordination. The secondalgorithm

is basedon the Kinetic theory of gaseswhich models inter-particle and particle-wall

collisions.

Using the physicomimetics approach Zarzhitsky et al. explored the CPT task

with obstacleavoidance (Zarzhitsky, Spears, and Spears 2005). In the algorithms

presented, robots shareo w-�eld variableswith their neighbors and usethe valuesto

calculate the next way-points basedon the robots' own local coordinate axes.These

valuesdecidethe robot's next move which translates into a virtual force. They im-

plemented obstacleavoidanceusing the CPT algorithm in a hierarchical architecture,

in which robots usually navigate around obstaclesbeforecollision avoidancebecomes

necessary.

2.6 Obstacle Av oidance

In the speci�c context of obstacleavoidance, the most relevant papers are (Balch

and Arkin 1998;Balch and Hybinette 2000;Fredslundand Matari �c 2002). Balch and

Arkin examinethe behavior of four robots moving in formation through an obstacle

20

�eld with 2% coverage. Balch et al. extend this to an obstacle�eld of 5% coverage,

and also investigate the behavior of 32 robots moving around one medium sizeob-

stacle (Balch and Hybinette 2000). Fredslund and Matari �c examinea maximum of

eight robots moving around two wall obstacles(Fredslundand Matari �c 2002). To the

best of our knowledge,we are the �rst to systematically examinelarger numbers of

robots and obstaclesusing swarm robotics approaches.

Schultz presented a projective planning algorithm for real-time autonomousun-

derwater navigation through obstacles(Schultz 1991). He use\SAMUEL" , a learning

systembasedon geneticalgorithms to learn high-performancereactive strategiesfor

navigation and collision avoidance. He presented results in simulation with a single

autonomousunderwater vehicleand showed that SAMUEL canachieve a successrate

of 96% on randomly generatedmine �elds over a human-designedstrategy that has

an averagesuccessrate of only 8%.

Simmonspresents a new method for local obstacleavoidanceby indoor mobile

robots that formulates the problem as one of constrained optimization in velocity

space(Simmons 1996). The robot choosesvelocity commandsthat satisfy all the

constraints such as the physical limitations of the robot and the environmental lim-

itations, and maximize an objective function that trades o� speed,safety and goal-

directedness. He demonstratesthe utilit y of this algorithm using a single physical

robot in a controlled laboratory environment.

Another relevant work in obstacleavoidanceis dynamic window approach (DWA).

This approach is mostly suited for robots moving at a high speed and is derived

directly from the robot's motion dynamics (Fox, Burgard, and Thrun 1995). In the

DWA, the search for commandsthat control the robot is carried out in spaceof

velocities. The robot only considersthe velocities that are safewith respect to the

obstacles. They present their results with tests done using an autonomousrobot

21

called \RHINO" which usesproximit y sensorsto compute the dynamic window.

Borenstein et al. present an approach that permits the detection of unknown

obstaclessimultaneouslywith the steeringof the mobile robot to avoid collisionsand

advancetoward the target (Borenstein and Koren 1989). They usea \virtual force

�eld" method that usespotential �elds for navigation and certainty grids for obstacle

representation. They showed that this method is especially suitable for noisy and

inaccurate sensorinputs. They also addressedthe \lo cal minimum trap" problem

whererobots get stuck in a U-shaped obstacle. We addressthis issuein Chapters 6

and 7.

O'Hara usesan embedded network distributed throughout the environment to

approximate the path-planning spaceand usesthe network to computea navigational

path using a framework called \GNA Ts" when the environment changes(O'Hara,

Bigio, Dodson,Irani, Walker, and Balch 2005). The dynamismof the environment is

modeledwith an opening and closingdoor in the experimental setup. However, the

embeddednetwork is immobile, whereasour network is completelymobile.

2.7 Summary

We have discussedseveral di�erent approachesto both robot swarm formation con-

trol and robot obstacleavoidance. Each of theseapproacheshas its advantagesand

limitations.

Behavior-basedand rule-basedtechniquesdo not make useof potential �elds or

forces. Instead, they deal directly with velocity vectors and heuristics for changing

thosevectors(although the term \p otential �eld" is often usedin the behavior-based

literature, it refersto a �eld that di�ers from the strict Newtonian physicsde�nition).

Also, they either assumethe existenceof a global controller or they are basedon

22

heuristics. Approaches that assumethe presenceof a global controller fail to adapt

well to unknown environments.

The physicomimeticsapproachesfocuson potential energyand forcebalanceequa-

tions. Physicomimetics is capableof creating uid-lik e formations as well as solid

formations. Thesedi�erent formations can be createdby simply modifying force law

parameters.In addition, physicomimeticsis capableof providing behavioral assurance

to agents that adapt in dynamic environments. Physicomimeticsis fully distributed

and doesnot assumethe presenceof a global controller, and is computationally ef-

�cient due to the lack of computation of potential �elds (Spears, Gordon-Spears,

Hamann,and Heil 2004). Our work is a novel extensionto physicomimeticsthat pro-

vides superior results in the area of heterogeneousand homogeneousswarm control

using the obstacleavoidancetask.

Chapter 3

Ph ysicomimetics

3.1 In tro duction

This chapter providesan overviewof the framework for distributed control of robots in

a swarm, called \ph ysicomimetics" or \arti�cial physics" (Spearsand Gordon 1999).

Spearsand Gordon usethe term \arti�cial" (or virtual) becausealthough this frame-

work is motivated by natural physical forces,it is not restricted to them. Although

the forcesexerted upon a robot by other robots and that environment are virtual,

robots act as if they are real. Thus the robot's sensorsmust sensefar enough to

allow it to computethe forceto which it is reacting. The robot's e�ectors must allow

it to respond to these perceived forces. Spears's explain their motivation for this

framework in (Spears,Gordon-Spears,Hamann, and Heil 2004):

At �rst blush, creating hexagonsappears to be somewhatcomplicated,

requiring sensorsthat can calculate distance, the number of neighbors,

their angles,etc. However, only distanceand bearing information is re-

quired. To understand this, recall an old high-school geometry lessonin

which six circles of radius R can be drawn on the perimeter of a central

circle of radius R. Figure 3.1 illustrates this construction. If the particles

(shown as small circular spots) are deposited at the intersectionsof the

23

24

circlesthey form a hexagonwith a particle in the middle.

Figure 3.1: How circlescan createhexagons.

There are two potential advantages to this approach. First, in the real physi-

cal world, collectionsof small entities yield surprisingly complexbehavior from very

simple interactions betweenthe entities. Thus, there is an acceptedprecedencethat

complexcontrol can emergethrough simple local interactions. Second,sincethe ap-

proach is largely independent of the sizeand number of robots, the results scalewell

to larger robots and larger setsof robots.

3.2 Ph ysicomimetics Approac h

In the physicomimeticsframework, virtual physicsforcesdrive a swarm robotics sys-

tem to a desiredcon�guration or state. The desiredcon�guration is one that mini-

mizesoverall systempotential energy, and the systemacts as a molecular dynamics

(~F = m~a) simulation.

Each robot has position ~p and velocity ~v. We usea discrete-timeapproximation

to the continuous behavior of the robots, with time-step � t. At each time step, the

25

position of each robot undergoes a perturbation � ~p. The perturbation dependson

the current velocity, i.e., � ~p = ~v� t. The velocity of each robot at each time stepalso

changesby � ~v. The changein velocity is controlled by the force on the robot, i.e.,

� ~v = ~F � t=m, wherem is the massof that robot and ~F is the force on that robot.

F and v denote the magnitude of vectors ~F and ~v. A frictional force is included

for self-stabilization and modeled by decreasingthe robot's velocity by a constant

multiplicativ e factor. Figure 3.2 shows the perturbation of the robots R and R4 due

to forcesexertedupon them by other robots and the environment.

Figure 3.2: Robots R and R4 undergoa perturbation to their positions due to forces
from other robots and the environment. Robot R4 doesnot senseforcesfrom robots
R1 through R3 due to sensorproximit y.

Our objective is to have the physicomimeticsframework map easily to physical

hardware, and Spears'sphysicomimetics framework reects this design philosophy.

Having a massm associated with each robot allows our simulated robots to have

momentum. Robots need not have the samemass. The frictional force allows us

to model actual friction, whether it is unavoidable or deliberate, in the real robotic

system. With full friction, the robots cometo a completestopbetweensensorreadings

26

and with no friction the robots continue to move as they sense. The time step � t

reects the amount of time the robots needto perform their sensorreadings. If � t

is small, the robots get readingsvery often whereasif the time step is large, readings

are obtained infrequently. We have alsoincluded a parameterFmax , which providesa

necessaryrestriction on the accelerationa robot can achieve. Also, a parameterVmax

restricts the maximum velocity of the robots (and can always be scaledappropriately

with � t to ensuresmooth path tra jectories).

3.3 Newtonian Force Law

The Newtonian ForceLaw (Newtonian) hasbeenusedin prior work (Spears,Spears,

Heil, Kerr, and Hettiarachchi 2004)and is a generalizationof the \Newtonian" grav-

itational force law which includesboth attraction and repulsion. The force law is:

Fi;j =
mi mj G

r p
(3.1)

F � Fmax is the magnitude of the force betweentwo robots i and j , and r is the

distancebetweenthe two robots. The massesof the robots aredenotedasm i and mj ,

and are assumedto be set to 1.0 in this thesis. The variable G a�ects the strength

of the force. The variable p is a user-de�ned power that controls the reduction in

strength with distance. The force is repulsive if r < R, attractiv e if r > R, and

is zero beyond a certain range (e.g., 1:5R), to enforcethe local nature of the force

law. R is the desiredseparationbetweena robot and neighboring robots. In order to

achieve optimal behavior, the valuesof G, p, and Fmax must be determinedaswell as

the amount of friction. The Newtonian force law generally createsrigid formations

that act as solids,even in the presenceof sensorand locomotion uncertainty.

27

3.4 Lennard-Jones (LJ) Force Law

In this thesis we also investigate the utilit y of a secondforce law, which is a gener-

alization of the Lennard-Jones(LJ) force law. The LJ potential function was �rst

proposedby John Lennard-Jonesin 1929. This potential function modelstwo distinct

forcesbetweenneutral moleculesand atoms. The forcesare basedon the distances

betweenthe molecules;at long rangesthe attractiv e forcemakesthe moleculesmove

closerand at short rangesthe repulsive forcemakesthe moleculesmoveapart, causing

the moleculesto maintain a natural balance.The LJ potential function can be given

by the expression:

LJ Pr = 4�

" � �
r

� 12

�
� �

r

� 6
#

(3.2)

As shown in Figure 3.3,whenever � = 1 and � = r , the interaction energybetween

two moleculesis at zero, which is the molecule'sequilibrium. When the separation

distancer > 1, interaction energyquickly decreasesto -1 and then increasesand even-

tually reacheszero due to longer range, causingnon-interaction betweenmolecules.

When r < 1, the interaction energy between two moleculesis very high, reaching

1 . Due to the behavior shown by the LJ potential function, this becomesan ideal

function to model interactions betweenrobots and their environments.

To model interactionsof robots in a swarm, we needto transform the LJ potential

function to a force function. Since the force between two moleculesis the negated

derivative of the potential,

F = �

d(LJ Pr)

dr

!

; (3.3)

the force betweenrobots i, j could be derived as:

28

-1

-0.5

 0

 0.5

 1

 0 1 2 3 4 5

In
te

ra
ct

io
n

E
ne

rg
y

Separation Distance

Interaction Energy of Lennard-Jones Potential

Figure 3.3: Interaction potential of LJ with � = 1 and � = 1.

Fi;j =
� 4�

r

"
� 12� 12

r 13
+

6� 6

r 7

#

(3.4)

and � = R is the desireddistancebetweentwo robots. Wederive the forcefunction

for interaction betweentwo robots as:

Fi;j = 24�

"
2d� 12

r 13
�

c� 6

r 7

#

(3.5)

Again, F � Fmax is the magnitude of the force between two robots, and r is

the distance between the two robots. The variable � a�ects the strength of the

force,while c and d control the relative balancebetweenthe attractiv e and repulsive

components. In order to achieve optimal behavior, the valuesof � , c, d, and Fmax must

bedeterminedaswell asthe amount of friction. Our motivation for trying the LJ force

law is that (dependingon the parametersettings) it can easilymodel crystalline solid

29

formations, liquids, and gases. The pseudocode of the physicomimeticsalgorithm

that usesthe LJ force law for robot-robot interactions can be seenin Figure 3.4.

By changing the parameter settings of the force law, we can model liquid or solid

behavior of the swarm.

3.5 Summary

We presented two approachesto the physicomimeticsframework which arecapableof

distributed control of robots in a swarm. In the physicomimeticsframework, virtual

physics forces drive a swarm robotics system to a desired con�guration or state.

Through the sensorsand e�ectors robots senseand react to virtual forcesfrom other

robots and environment as if these forces are real. These approaches provide us

with two advantages: complex behavior of the systemcan be achieved from simple

interactions betweenrobots, and the behavior scalesto large numbers of robots.

30

float distance, turn, vx, vy, delta vx, delta vy
float netforce, c, d, �
float deltax, deltay, current x, current y, next x, next y
float delta t = 1.0
float VMAX= 20.0
float FR = 0.9
float R = 50.0
float Fx = 0
float Fy = 0
float TIMESTEP= mass = 1.0

void compute newlocation()
v = FR * v
for all robots except this robot r i

determine distance r to robot r j

determine the spherical coordinate � to r j

if (r <= 1.5 * R)
netforce = interactionForce (R, r)

endif
Fx = Fx + (netforce * cos(�))
Fy = Fy + (netforce * sin(�))

endfor
delta vx = TIMESTEP* Fx / mass
delta vy = TIMESTEP* Fy / mass
vx = vx + delta vx
vy = vy + delta vy
v = sqrt(vx * vx + vy * vy)
if (v > VMAX)

vx = (vx * VMAX)/v
vy = (vy * VMAX)/v

endif
deltax = vx * TIMESTEP
deltay = vy * TIMESTEP
next x = current x + deltax
next y = current y + deltay

end compute newlocation

float interactionForce (desi redDist ance, distance)
float attractive, repulsive, force
attractive = 2 * d * pow(desiredDistan ce,1 2) / pow(distance,13)
repulsive = c * pow(desiredDistan ce,6) / pow(distance,7)
force = 24 * � * (attractive - repulsive)
if (force > FMAX)// FMAXis a learned parameter

force = FMAX
if (force < -FMAX)

force = -FMAX
return force

end interactionForce

Figure 3.4: Pseudocode of the physicomimeticsalgorithm that usesthe LJ force law
for robot-robot interactions.

Chapter 4

Evolutionary Learning

4.1 In tro duction

Motivated by Darwinian evolution and natural selection,Evolutionary Learning(EL),

has been rapidly developing and gaining popularity as a powerful general learning

approach. The machine learning community recognizesEL as a population-based

learning technique that can be usedto �nd exact or approximate solutions to opti-

mization and search problems. Symbolic systemssuch as rule-basedsystemsas well

as sub-symbolic systemssuch as arti�cial neural networks have used evolutionary

learning as an optimization tool. EL systemsallow selectionof an optimum or most

satisfactory individual in the last generationas the �nal learned system (Yao, Liu,

and Darwen 1996).

Our reasonsfor choosingEL dependon the following three motives: �rst, we have

the necessarybackground for implementing evolutionary learning systems;second,

we are aware that evolutionary learning outperforms Reinforcement Learning (RL)

in non-Markovian tasks (de Croon, van Dartel, and Posma2005). Croon empirically

demonstratesthat RL and EL methods result in di�erent levelsof performancewhen

applied to a non-Markovian task like the active categoricalperceptiontask (ACP). In

the ACP task, the agent hasto categorizefalling objectsby catching or avoiding them.

During the ACP task, the proportion of the ambiguoussensorstates can be varied.

31

32

Croon et al. demonstratethat EL outperforms RL at all levels of sensorambiguity

and the relative performanceof EL increaseswith the proportion of ambiguoussensor

states. Croon arguesthat the reasonfor this performancedi�erence is that in RL the

learnedpolicy consistsof thosestate-action pairs that individually have the highest

estimatedvalues,while the performanceof a policy for a non-Markovian task highly

dependson the combination of state-actionpairs selected.The third reasonfor using

this population-basedstochastic algorithm is that it quickly generatesindividuals

that have robust performance.

Given generalizedforce laws, such as the Newtonian force law or the Lennard-

Jones (LJ) force law that we discussedin Chapter 3, it is necessaryto optimize

the parameters to achieve the best performance. We accomplish this task using

an Evolutionary Algorithm (EA). We develop an EL system for a swarm of robots

learning the obstacleavoidancetask (Spears,Jong, Ba•ck, Fogel,and de Garis 1993).

Our intention is to have the robots learn the optimum parametersettingsof the force

laws (rules); thus they successfullymaintain formation while avoiding obstacles,and

reaching a goal in a complexobstacle-ladenenvironment.

4.2 Evolutionary Algorithms

We usean Evolutionary Algorithm (EA) to optimize force law parametersnecessary

for a swarm of robots to learn to navigate within a complexenvironment with obsta-

clesand a goal. EAs are a part of the EL approach and as such are motivated by

biological evolution. An organism'sattributes such as its anatomy and behavior are

decidedby its genotype or biological data structures. In a computer program these

data structures can be easilymanipulated and can alsobe interpreted as information

that encodes di�erent characteristics (phenotype) of the organism. An EA can use

33

Randomly generate an initial population of N individuals
Evaluate the initial population
While termination criterion not met

Select parents
Apply reproduction operators and produce children
Evaluate children
Select individuals for next generation

endwhile

Figure 4.1: Typical EA pseudocode.

genetic operators such as reproduction, natural selection,mutation, recombination,

and competition which are inspired by Darwinian evolution. Thus, using an EA to

optimize parametersettingsfor a robot or any mechanical devicemakesperfectsense.

EAs are stochastic optimization algorithms that evolve an optimum solution from

a randomly initialized setof candidatesolutions,modifying individuals in the solution

spaceto perform better in the environment. An EA usesa �tness evaluation function

to determine the quality of an individual. Genetic operators such as recombination

and mutation are used to create o�spring from existing individuals. The relative

quality of an individual in the population determinesthe individual's survival and its

capability to reproduce. The initial population or the �rst generationof candidate

solutionsareusually randomly generated,and the subsequent generationsaredecided

by the �tness of the individuals basedon the �tness proportional selectionscheme.

Fitness proportional selectionassuresthat individuals with higher �tness get to re-

produce new individuals for the next generation, and that the individuals perform

poorly in the environment will eventually perish. Maintaining the diversity of the

population of solution spaceis extremely important; the diversity of the population

can be maintained using geneticoperators like recombination and mutation. Figure

4.1 shows the typical executionstepsof an EA.

34

The commonly usedEA in Figure 4.1 maintains a constant population size,but

the size of the child population can vary basedon the implementation type of the

EA. Though all types of EAs guarantee a solution in the solution space,when the

termination criterion is met, they do not guarantee the optimalit y of a solution. This

may actually causethe learning algorithm to get stuck in a local optimum. Carefully

choosingmore suitable strategiesspeci�c to the problem domain being studied could

prevent the EA from getting stuck in a local optimum.

4.2.1 Represen tation of an Individual

Choosing an e�cien t representation (the genotype) for an individual is one of the

important EA designdecisions.There are many ways to represent an individual, and

the choice of representation is strongly dependent on the problem that we need to

solve. When choosing a representation we should bear in mind that this decision

determineshow the �tness of the individual is evaluated and what type of genetic

operatorsareusedto createa newpopulation for the next generationfrom the current

population. There are three commonlyusedrepresentations: bit-strings, integersand

real values.

When optimizing parameterswith real values,we can naturally encode the real

numbers directly in the individual representation (seeTable 4.1). Each of the X i is

referred to as an \allele" of the genotype. Sincewe evolve parametersfor the force

laws, we usereal valuesrestricted to an upper and a lower bound in our individual

representation. We represent our forcelaw parametersin a vector data structure. the

interpretation of this structure changesbasedon the type of force law that is being

used.

35

Individual X 1 X 2 ... X n

Table 4.1: An individual is represented as n real numbers.

4.2.2 Fitness Evaluation

Another major step in the EA executionis evaluating the �tness of an individual in a

population. The �tness function quanti�es the relative strength of an individual com-

pared to other individuals in the population. This allows the EA to rank individuals

and determine the individuals that are allowed to reproduce (selectionprobability).

In one possiblescheme,individuals that have higher �tness than the average�tness

of the population are allowed to reproduce and contribute their genetic makeup to

future generations.

The �tness evaluation alsodependson the representation of the individuals. When

the individual is represented as a real-valued structure, we map this representation

to a �tness function that evaluates the individual's �tness to a real value as shown

below.

F : R n � ! R (4.1)

4.2.3 Genetic Op erators

EAs usegeneticoperatorsto createo�spring from an individual or several individuals

in the current population. The two main genetic operators are recombination and

mutation. Basedon the type of EL approach, the useof theseoperators may vary.

Geneticoperatorshelp to maintain the geneticvariation of a population, thusavoiding

premature convergenceof that population.

There are numerousmutation techniques in the literature and they depend on

36

Parent 0 1 1 0 1 1 1 0 1
O�spring 0 1 0 0 1 1 1 0 1

Table 4.2: Beforeand after bit-ip mutation of a bit-string representation.

Parent 3 1 4 7 0 2 5 8 6
O�spring 3 1 5 7 0 2 4 8 6

Table 4.3: Beforeand after two-swap mutation of an integer representation.

the type of individual representation. Bit-string representations usea bit-ip method

(seeTable 4.2). In this method, the EA randomly picks an allele (a bit) and logically

negatesthe value of that allele. A standard mutation rate is Pm = 1=L, where L is

the length of the genotype.

The two-swap operator is usedfor permutation integer representations. The EA

randomly picks two alleles and swaps their positions within the individual. This

successfullyrestricts the duplication of any of the chosenalleles(seeTable 4.3).

Gaussianmutation is typically used in real-value representations. This method

adds a randomly generatedreal value from a Gaussiandistribution with mean 0.0

and standard deviation � to an allele chosenwith probability 1=L (seeTable 4.4).

Sincewe represent force law parameterswith real values,we useGaussianmuta-

tion as one of the geneticoperators in our EA. An execution trace of our Gaussian

mutation operator is shown in Figure 4.2.

The other widely usedgeneticoperator is the recombination operator, alsoreferred

to as "crossover". Recombination createsone or more o�spring by merging alleles

Parent 1.3 4.1 2.4 4.7 0.2 2.2 1.5 4.1 2.6
GaussianStep 1.3 4.1 2.4+0.7 4.7 0.2 2.2 1.5+0.3 4.1 2.6

O�spring 1.3 4.1 3.1 4.7 0.2 2.2 1.8 4.1 2.6

Table 4.4: Beforeand after Gaussianmutation of a real-value representation.

37

for all individuals in the population
make a copy of the i th individual
for all alleles in the copied individual

if (U(0; 1) < Pm)
add N (0; �) to the j th allele

endif
do boundary checking on the mutated values

endfor
replace i th individual with the copy

endfor

Figure 4.2: Pseudocode of Gaussianmutation.

from two or several parents. The most popular recombination methods are one-

point, multi-p oint and uniform recombination. In one-point crossover, two parents

are split at a single point. Then the two allele segments are swapped to create two

o�spring. In multi-p oint crossover, the parent is split at multiple points and segments

are swapped between pairs of cut points. In uniform crossover, individual alleles

are swapped between two parents with a �xed probability. Our EA usesone-point

crossover to produceo�spring.

4.2.4 Selection

Selectiondeterminesthe survival of individuals from generationto generation. Our

EA uses�tness proportional selection. In �tness proportional selection,individuals

are given a probability of being selectedthat is directly proportional to their �tness.

The executionstepsof the �tness proportional selectionalgorithm are shown in Fig-

ure 4.3. We decidedto choose�tness proportional selectionover other standard EA

selectionstrategies. Our prior observations have shown that �tness proportional se-

lection producesvery desirablebehavior for the obstacleavoidancetask. This may

38

for all individuals in the population
compute cumulative expected number of offspring

endfor
r = U(0; 1)
population counter = 0
while population counter is less than population size

if (r < cumulative expected number of offspring of individual i)
(offspring counter of individual i) ++
r += 1
(population counter)++

else
next individual (i++)

endif
endwhile
create offspring

Figure 4.3: Pseudocode of stochastic universal sampling for �tness proportional se-
lection.

be due to the fact that selectionpressuredependson our evaluation function and the

population dynamicsasshown by Sarma (Sarmaand de Jong 1998). Sarmashowed

that selectionpressureand performancedepend on the type of evaluation function

and the population dynamics.

The (� , �) selectionscheme,which is alsocommonlyusedby EA community pro-

ducesa local optimum when usedin our obstacleavoidancetask. In (� , �) selection,

the EA generates� o�spring from a population of � parents (� > �), and from the �

o�spring it keepsthe � best individuals to for the next generation.

4.3 EA for Obstacle Av oidance

Obstacle avoidance is a common task that robots need to accomplishin numerous

problem domains such as search and rescue,surveillance, chemical plume tracing,

terrain mappingand mine detection. Learning the optimal parametersettingsneeded

39

to accomplishthe task is extremely important.

We developed a simulation tool consistingof an EA and a performancemeasure-

ment metric for a swarm of robots to learn the obstacleavoidancetask. We explain

our performancemeasurement metric in Chapter 5.

4.3.1 Simulation Arc hitecture

Our simulation architecture, as shown in Figure 4.4, consistsof four modules: an

EA for evolving the population of force laws, an environment generator, a global

observer which evaluatesthe performanceof a particular forcelaw, and a performance

measurement modulewhich evaluatesthe quality of the optimum forcelaw. A detailed

discussionof the performancemeasurement module is provided in Chapter 5.

Figure 4.4: The architecture of the simulation tool.

Our EA is a population-basedstochastic optimization algorithm inspired by nat-

ural evolution. The EA randomly initializes the initial population of force laws, and

40

then, it mutates and recombinesthe candidatesolutions (individuals) basedon their

performancein our environment. Finally, the EA createsa population of o�spring

from the parent population of candidate solutions. Every individual in the popula-

tion is a vector of real-valued parameters,representing an instantiation of either the

Newtonian or LJ force law (depending on the force law being optimized).

The environment generatorcreatestask environments to test the force laws. The

environment consistsof robots, randomly positioned obstacles,and a goal. Each

force law is tested on n di�erent environment instancescreatedby the environment

generator. Each robot carriesa copy of the force law and navigates towards the goal

while avoiding obstacles. Robots are given a limited amount of time to accomplish

the obstacleavoidancetask and reach the goal while maintaining the formation. We

refer to this as an evaluation run.

f itnessind =
R 1 + R 2 + � � � + R n

n
(4.2)

The global observer (�tness function) evaluates the performanceof the force law

in an instance of the environment and assignsa �tness value, R i . Each evaluation

run must be completed within a speci�c time interval, and the �tness assignment

occurs at the end of the time interval which is also the end of an evaluation run.

The �nal �tness, f itnessind , of an individual is computedoncen evaluation runs are

completed.

Once the termination criteria of the EA is met, the EA outputs the optimal

parametersetting for the force law that is being optimized. The termination criteria

of our EA is G generations.The top level executiontrace of our obstacleavoidance

EA is presented in Figure 4.5

41

generate n random instances of environments
generate initial EA population
for G Generations

for N individuals in the population
for k environment instances

evaluate an individual
sum the fitness value
next environment instance

endfor
compute the fitness of the individual
next individual

endfor
select individuals for the next generation
apply genetic operators
create offspring
next Generation

endfor

Figure 4.5: The top level pseudocode of our obstacleavoidanceEA.

4.3.2 Obstacle Av oidance Simulation Tool

Our obstacleavoidancesimulation tool in Figure 4.6 is an extension to Adam Sci-

ambi's original version of the physicomimeticssimulation tool1. The simulation is

implemented using JAVA and runs on Linux-basedmachines.

The simulation tool consistsof a Graphical User Interface(GUI), a training mod-

ule with an EA, and a performanceevaluation module. Whether it is optimizing force

laws using the EA or evaluating the performanceof the optimal parametersettings,

the usercan observe the behavior of the robots in the environment using the GUI.

Using sliders in the bottom right of the GUI, the usercan change:

� the number of robots: a minimum of 1 robot to a maximum of 100robots. This

setsthe amount of robots that are being trained or the number of robots that

1http://www.cs.u wyo.edu/� wspears/ap.2D/DEMO.h tml

42

Figure 4.6: Simulated tool for obstacle avoidance task

are being tested with the trained force law. All of the robots start in the bottom

left corner of the simulation world, but this could vary based on the starting

radius.

• the number of obstacles: a minimum of 1 obstacle to a maximum of 100 ob-

stacles. This sets the amount of obstacles that are randomly placed in the

simulation world. Initially our robots are in a tight cluster, and high potential

energy (Spears, Spears, and Heil 2004) in this cluster creates an explosion when

the robots start moving. This explosion causes a large number of collisions

(proximity collisions), if there are obstacles near by. Also, when the robots

reach the goal, they rotate and adjust the formation to its minimum potential

energy state again, causing proximity collisions. To avoid proximity collisions,

we do not position obstacles close to the initial position of the robots and the

43

goal. This provides our robots sufficient space to get into formation without

colliding with obstacles.

• sensor range: a minimum of 0.1R to a maximum of 19.9R. This sets the range

each robot perceives in its neighborhood. Smaller sensor range causes the robots

to detect a limited distance while higher sensor range allows them to detect

further. Our robots start learning their environment with a sensor range of

1.5R.

• starting radius: a minimum of 0.1R to a maximum of 9.9R. This sets the ini-

tial positions of each robot relative to each other. A smaller starting radius

positions robots closer to each other in a cluster, and a larger starting radius

positions them away from one another. The starting radius has no effect when

the robots start navigating towards the goal. When the robots are navigat-

ing, their positions are decided by the forces acting on them and the desired

separation distance R.

• friction: a minimum value of 0 to a maximum value of 1. Friction controls

the damping of the simulated robot’s velocity, providing system stability. This

controls the robot’s acceleration, preventing robots from launching out of the

simulation world. Friction is modeled by decreasing the robot’s velocity by a

constant multiplicative factor.

• time step: a minimum of 0.1 to a maximum of 5.0. The time step determines

how fast or slow the next update to the environment will happen. At the

minimum setting, there are frequent updates and at the maximum setting the

system is updated less frequently.

Using buttons in the bottom left of the simulation (see Figure 4.6, the user can:

44

• “Start” button: releases robots from their initial position. The robots start

moving towards the goal through the obstacles.

• “Stop” button: stops the robots movement and put them back at the initial

start position.

• “Restart” button: stops the simulation and restarts it.

• “Open Defaults” button: opens a window for the user to choose the types of

robot formation: triangular (hexagon) or square, and if the formation is in two

dimensions (2D) or three dimensions (3D). The button label switches to “Close

Defaults” once the window is open and closes the window when pressed again.

• “Quit” button: terminates the simulation run, closes all the windows and re-

leases the memory back to the system.

Using drop down menus, the user can:

• select the time interval to update the graphic canvas where the simulation world

is displayed using “Cycles/Frame”. The menu consists of five options: 1, 5, 10,

100, 500, and 1000. The option “1” updates the display canvas every time step

and the option “1000” updates the canvas every 1000 time steps. The system

updates the robot positions every time step regardless of updates on the canvas.

• change the robot formation from 2D to 3D or 3D to 2D while the robots are in

the field.

• change the robot formation from triangle (hexagon) to square or square to

triangle (hexagon) while the robots are in the field.

A User can display the connectivity of the robots in formation by clicking the

“Connect” box; if two robots are in their sensor range there is a line drawn between

45

the two robots. Error and Noise in the simulation world are two other options that a

user can choose to display.

4.4 Fitness Evaluation for Obstacle Avoidance

We carefully designed a fitness function to evaluate force law individuals. Our fitness

function consists of three objectives.

• maintaining formation: robots form hexagonal lattice formations and maintain

the formation while navigating. A robot attracts its neighbors if the neighbors

are 1.5R distance away and repulses its neighbors if the neighbors are closer

than 1.5R distance.

• avoiding obstacles: robots are capable of sensing the repulsive forces of obstacles

from a distance of Ro + 20 from the center of the obstacle. Ro is the radius of

an obstacle, which is 10. If the distance between the center of the robot and

the center of the obstacle is less than Ro + 1, a collision occurs. The radius of

the robot is 1.

• reaching a goal: robots should reach the goal while maintaining formation and

avoiding collisions with the obstacles. Robots sense the global attractive force

of the goal at any distance. Robots are given a limited amount of time to reach

the goal.

In our EA, we focus on designing a multi-objective fitness function to evolve opti-

mal force law parameters. Since we do not change our objectives during optimization

of Newtonian and LJ force laws, we use the same evaluation function, The biggest

challenge is how to develop a compromise between the three objectives, so that the

46

evaluation function is capable of providing us with an optimal solution that is not

biased toward any of the objectives.

4.4.1 Pareto Optimization

When there are multiple competing objectives, evolving an optimal solution is chal-

lenging. Multi-objective fitness functions are capable of providing compromising so-

lutions in the solution space. One of the most common techniques to multi-objective

optimization is to obtain a set of non-dominated solutions or a Pareto front. This

method is also referred to as Pareto Optimization.

Since an EA searches a population space for an optimal solution in a parallel

fashion, the EA seems amenable to Pareto optimization (Menczer, Degeratu, and

Street 2000). Deb has shown the difficulties with Pareto optimization (Deb 1999).

The EA does not converge on a true Pareto optimal set. Deb indicates that multi-

modality, deception, isolated optimum and collateral noise are reasons for this failure.

Multi-modality refers to the multiple Pareto optimal fronts; deception refers to EA

getting stuck in a local optima; an isolated optimum occurs when the solution space

is flat; and collateral noise occurs when partially good solutions are discarded due to

poor performance in another objective of the solution.

Numerous research articles have presented solutions to overcome difficulties with

Pareto optimization. One technique targets a specific solution in the solution space

by eliminating the need to consider the whole Pareto front by introducing a weighted

fitness function. The weighted fitness function allows the target solution to get a

higher fitness value, improving its probability of surviving to reproduce. The weights

are decided based upon the importance of different objectives (Sbalzarini, Mller, and

Koumoutsakos 2000).

47

4.4.2 Fitness Evaluation

We introduce a weighted fitness function with penalties to evaluate the force law

individuals in our population of force laws. Fitness evaluation occurs at every time

step for every individual within the permitted time limit.

fitness = w1PCollision + w2PNoCohesion + w3PNotReachGoalInPermittedT ime

The weighted fitness function consists of three components:

• a penalty for collisions,

• a penalty for lack of cohesion,

• a penalty for robots not reaching the goal.

The fitness function uses positive penalties, and it is a minimizing function.

4.4.3 Penalty for Collisions

For all of the swarm tasks that we discussed in Chapter 1, avoiding collisions with

obstacles in the task environment is important. In our simulation world, there are no

safety zones around the obstacles as presented in (Balch and Hybinette 2000). The

maximum sensing distance of the repulsive force on a robot from the center of an

obstacle is set at Ro + 20. A collision occurs if the center of the robot is within the

perimeter of an obstacles. We add a penalty to the fitness score if the robots collide

with obstacles. All robots in the simulation world are evaluated for collisions and a

penalty is added at each discrete time step within the permitted time interval.

48

4.4.4 Penalty for Lack of Cohesion

Maintaining a cohesive formation is another important aspect, especially during CPT

and terrain mapping. With cohesive formations, robots maintain uninterrupted com-

munication paths between one another allowing efficient distribution of resources.

Additionally, this is important in mobile sensor networks where area coverage should

be maximized.

The cohesion penalty is derived from the fact that in a good hexagonal lattice (as

shown in Figure 3.1), interior robots should have six local neighbors at a distance of

R. A penalty occurs if a robot has more or less neighbors and the value of the penalty

is proportional to the error in the number of neighbors. This fitness pressure prevents

the robots from forming tight clusters that may cause overlapping, or separation of

the entire formation which in turn may cause the swarm to form sub-swarms when

navigating through obstacles. All the robots in the simulation world are evaluated

for cohesion and a penalty is added at each discreet time step within the permitted

time interval.

4.4.5 Penalty for Robots not Reaching the Goal

We also introduce a penalty to our fitness function for robots not reaching the goal

within a permitted time interval. In time critical search and rescue missions or defense

related missions, having the swarm achieve the goal in a limited permitted time

interval is extremely important. We added a penalty, if less than 80% of the robots

from the initial swarm did not reach the goal within the permitted time interval. At

the end of the permitted time interval, the EA evaluates the number of robots that

reach the goal, and if this number is less than 80%, a penalty is added. A robot has

reached the goal if the robot is within a 4R radius from the center of the goal.

49

4.4.6 Offline vs. Online Learning

In our simulation world, a global observer or the fitness evaluation module assigns

a fitness value to each force law based on its performance in the task environment.

We refer to this traditional approach of optimizing parameters as “offline learning”.

In static environments, individuals are trained repeatedly until a termination criteria

is met and the desired behavior is achieved. The fitness evaluation is done using

an explicit multi-objective fitness function. The force laws are trained using our

obstacle avoidance environment. We present an empirical analysis of offline learning

in Chapter 5.

In real life, future scenarios such as environmental changes are unpredictable,

and the robots may have to face novel situations. A robot’s ability to react to novel

situations is a part of the intelligent reaction that we expect to achieve with our robot

swarms. We refer to this approach as “online learning”. One of the most challenging

problems in online learning is fitness evaluation. Robots that learn a force law in

a specific environment are unable to adapt to another environment using the same

force law. Thus, it is not feasible to use the same fitness evaluation function in the

new environment. We propose an implicit fitness evaluation paradigm for “online

learning” and present an empirical analysis in Chapter 6.

4.5 Parameter Optimization

For our robots to successfully accomplish their task, we optimize the two force laws

using an EA. The Newtonian force law’s parameters are different from the LJ force

law’s parameters. Our EA is not designed to optimize both force laws at the same

time. Therefore, we executed our EA twice to achieve optimal parameter settings,

once for the Newtonian force law and once for the LJ force law. Each force law

50

contains parameters for robot-robot, robot-obstacle, and robot-goal interactions.

4.5.1 Methodology

To optimize the force law parameters, we use the training module of our simulation

tool. This training module allows the user to specify the type of force law, minimum

and maximum parameter value bounds, the population size, the termination criteria,

the mutation rate, and the crossover rate. The training module allows the user to

either predefine the EA random seed or use the system time.

Our 2D simulation world is 900 × 700 in size, and contains a goal, obstacles and

robots. Though we can use up to a maximum of 100 robots and 100 static obstacles

with one static goal, we placed a compromise figure of 40 robots and 90 obstacles in the

environment when using the training module. The goal is always placed at a random

position in the right side of the world, while the robots are initialized in the bottom

left area. The obstacles are randomly distributed throughout the environment, but

are kept 50 units away from the initial location of the robots and the goal to avoid

proximity collisions. Each circular obstacle has a radius Ro of 10, and the square

shaped goal is 20 × 20. When 90 obstacles are placed in the environment, roughly

4.5% of the environment is covered by the obstacles (similar to (Balch and Hybinette

2000)). The desired separation between robots R is 50, and the maximum velocity

Vmax is 20. Figure 4.7 shows 40 robots navigating through randomly positioned

obstacles. The larger circles are obstacles and the square to the right is the goal.

Robots can sense other robots within a distance of 1.5R, and can sense obstacles

within a distance of Ro + 20. The goal can be sensed at any distance.

The permitted time interval for the robots to reach the goal from their initial

position is set at 2000 simulation time steps. This accounts for approximately 47

seconds of clock time (we use a Linux-based dual processor Dell machine with Intel

51

Figure 4.7: 40 robots moving to the goal. The larger circles represent obstacles, while
the square in the upper right represents the goal.

Xeon 1500MHz processors). The EA was run with 100 individuals per population

and was allowed to terminate after 100 generations. It takes approximately four days

for our EA to achieve a parameter set that provides the desired behavior regardless

of the force law that is being optimized.

4.5.2 Optimizing Newtonian Force Law

The Newtonian force law contains two parameters: gravity and the power of the force

law.

Fi,j =
mimjG

rp
(4.3)

In addition to these two parameters, we evolved the maximum force and the

friction. The parameters we optimized are:

• Gr - gravitational constant of robot-robot interactions,

• pr - power of the force law for robot-robot interactions,

52

G Fmax p Fr
Min. 100.0 1.0 0.1 0.0
Max. 5000.0 5.0 2.0 1.0

Table 4.5: The range of values for the Newtonian parameters.

• Fmaxr
- maximum force of robot-robot interactions,

• Go - gravitational constant of obstacle-robot interactions,

• po - power of the force law for obstacle-robot interactions,

• Fmaxo
- maximum force of obstacle-robot interactions,

• Gg - gravitational constant of goal-robot interactions,

• pg - power of the force law for goal-robot interactions,

• Fmaxg
- maximum force of goal-robot interactions,

• Fr - friction in the system.

In the initial population of individuals, parameter values are randomly initialized

between a predefined minimum and maximum bound. These bounds are shown in

Table 4.5.

Figure 4.8 shows the evolved Newtonian robot-robot force law up to a distance

of 80. A robot can sense another robot up to a distance of 1.5R, where R is 50.

The force is repulsive when the distance between robots is less than 50, and it is

attractive when the distance is greater than 50. The evolved Fmaxr
takes effect when

the distance between robots is less than 35.

Figure 4.9 shows the evolved Newtonian robot-obstacle force law up to a distance

of 80. Note that the maximum sensing distance of the repulsive force on a robot from

53

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 10 20 30 40 50 60 70 80

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Robot Interaction of Newtonian Force Law

Figure 4.8: Evolved Newtonian force law for robot-robot interactions.

the center of an obstacle is set at Ro + 20. At distance 0, the robot is closest to the

obstacle and Fmaxo
is in effect, making the force between a robot and obstacle highly

repulsive. After distance 30, the effect of the repulsive force diminishes as the robot

moves away from the obstacle.

Figure 4.10 shows the evolved Newtonian robot-goal force law up to a distance of

80. A Robot can sense the goal force globally. At distance 0, the robot is closest to

the goal and at distance 80, robot is further away from the goal. The evolved force

law for the robot-goal interaction is constant regardless of the distance from the robot

to the goal. The robots sense the maximum attractive force of Fmaxg
from the goal.

It is our intention to avoid clustering of robots at the goal and our evolved robot-goal

interaction is capable of avoiding this effect of the robots once they reach the goal,

preserving the robot’s lattice formation.

54

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Obstacle Interaction of Newtonian Force Law

Figure 4.9: Evolved Newtonian force law for robot-obstacle interactions.

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Goal Interaction of Newtonian Force Law

Figure 4.10: Evolved Newtonian force law for robot-goal interactions.

55

4.5.3 Optimizing LJ Force Law

The LJ force law contains four parameters: the strength of interaction, a non-negative

attractive constant, and a non-negative repulsive constant.

Fi,j = 24ε

[

2dσ12

r13
−

cσ6

r7

]

(4.4)

In addition to these three parameters, we evolved the maximum force and the

friction of the system. The parameters we optimized are:

• εr - strength of the robot-robot interactions,

• cr - non-negative attractive robot-robot parameter,

• dr - non-negative repulsive robot-robot parameter,

• Fmaxr
- maximum force of robot-robot interactions,

• εo - strength of the obstacle-robot interactions,

• co - non-negative attractive obstacle-robot parameter,

• do - non-negative repulsive obstacle-robot parameter,

• Fmaxo
- maximum force of obstacle-robot interactions,

• εg - strength of the goal-robot interactions,

• cg - non-negative attractive goal-robot parameter,

• dg - non-negative repulsive goal-robot parameter,

• Fmaxg
- maximum force of goal-robot interactions,

• Fr - friction in the system.

56

ε Fmax c d Fr
Min. 1.0 1.0 1.0 1.0 0.0
Max. 20.0 5.0 10.0 10.0 1.0

Table 4.6: The range of values for the LJ parameters.

Again, in the initial population of individuals, the parameter values are randomly

initialized between a predefined minimum and maximum bound. These bounds are

shown in Table 4.6.

Figure 4.11 shows the evolved LJ robot-robot force law. Force is repulsive when

the distance between robots is less than 50, and it is attractive when the distance is

greater than 50. The evolved Fmaxr
takes effect when the distance between robots is

less than 45.

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Robot Interaction of Lennard-Jones Force Law

Figure 4.11: Evolved LJ force law for robot-robot interactions.

Figure 4.12 shows the evolved LJ robot-obstacle force law. The maximum sensing

distance of the repulsive force on a robot from the center of an obstacle is set at

57

Ro + 20. At distance 0, the robot is closest to the obstacle and Fmaxo
is in effect,

making the force between a robot and obstacle highly repulsive. After distance 14, the

effect of the repulsive force diminishes with the robot moving away from the obstacle.

-4

-2

 0

 2

 4

 0 5 10 15 20 25 30

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Obstacle Interaction of Lennard-Jones Force Law

Figure 4.12: Evolved LJ force law for robot-obstacle interactions.

Figure 4.10 shows the evolved Newtonian robot-goal force law. A Robot can sense

the goal force globally. At distance 0, the robot is closest to the goal and at distance

80, robot is further away from the goal. Again, the evolved force law for the robot-

goal interaction is constant regardless of the distance from the robot to the goal. The

robots sense the maximum attractive force of Fmaxg
from the goal. Again this evolved

robot-goal interaction is capable of avoiding any clustering of the robots once they

reach the goal, preserving the robot’s lattice formation.

58

-6

-4

-2

 0

 2

 4

 6

 0 10 20 30 40 50 60 70 80

F
or

ce
 M

ag
ni

tu
de

Distance

Robot-Goal Interaction of Lennard-Jones Force Law

Figure 4.13: Evolved LJ force law for robot-goal interactions.

4.6 Summary

In this chapter, we first discussed the background of EL and EAs. Evolutionary

Learning (EL) is motivated by Darwinian evolution and has been rapidly developing

and gaining popularity as a powerful general learning approach. We use an Evolu-

tionary Algorithm (EA) to optimize the force law parameters necessary for a swarm

of robots to learn a complex environment with obstacles and a goal. Given gener-

alized force laws, such as the Newtonian force law or the LJ force law (discussed in

Chapter 3), it is necessary to optimize the force law parameters to achieve the best

performance.

Then we presented a discussion on EA strategies and our motivation for select-

ing certain strategies. EAs are stochastic optimization algorithms that evolve an

optimum solution out of a randomly initialized set of candidate solutions; slowly

perturbing individuals in the solution space to perform better in the environment.

59

The EA uses a fitness evaluation function to determine the quality of an individual.

Genetic operators such as recombination and mutation are used to create offspring

from existing individuals. The relative quality of an individual in the population

determines the individual’s survivability and its capability of reproducing. Choosing

an efficient representation (the genotype) for an individual is one of the important

decisions. Our force law parameters have a real-value representation bounded by

minimum and maximum limits. We use two genetic operators, Gaussian mutation

and one-point crossover to produce offspring. We use a weighted fitness function with

penalties to evaluate the force law performance.

Finally we introduced our simulation tool and presented the behavior of the

evolved parameters. Our simulation tool consists of a Graphical User Interface (GUI),

a training module with an EA and a performance evaluation module. The simulation

tool allows users to select different options when setting up the environment. Our

evolved parameters produced far superior results than the results presented in the

literature. We present an empirical analysis of our results in Chapter 5.

Chapter 5

Offline Performance

5.1 Introduction

In Chapter 4, we presented our methodology of evolving force law parameters for the

Newtonian and LJ force laws. We called this “offline learning”. In this chapter, we

present an empirical analysis of the two force laws. We evaluate the performance of a

swarm of robots moving through an obstacle field and reaching a goal using the force

laws that were optimized by the EA.

Prior research in this area has generally focused either on a small number of

robots moving through a large number of obstacles, or a large number of robots mov-

ing through a small number of obstacles (Balch and Arkin 1998; Balch and Hybinette

2000). However, the more difficult task of moving a large number of robots in forma-

tion through a large number of obstacles is generally not addressed. Also, proposed

metrics of performance are not complete, ignoring criteria such as the number of

collisions between robots and obstacles, the distribution in time of the number of

robots that reach the goal, and the connectivity of the formation as it moves. Our

objective in this chapter is two-fold. The first objective is to provide a more com-

plete set of metrics from which meaningful comparisons can be made. Second, we use

these metrics, coupled with a more complete experimental methodology, to examine

(a) different strategies for performing the task, and (b) trade-offs between different

60

61

criteria.

5.2 Methodology

The simulation tool consists of training and performance evaluation modules. We

use the training module to evolve parameter sets for either the Newtonian or the LJ

force laws. As shown in Figure 5.1, in traditional offline approaches, a simulation tool

evolves force law parameters from a set of initial force laws, and the final product is

the optimized force law that achieves the desired behavior.

Figure 5.1: Traditional offline approach of evolving force law rules.

In this approach, a population-based EA optimizes the force laws while the fitness

function assigns a fitness value to each force law based on its performance in the

environment as shown in Chapter 4.

Once the optimal force law is found, it is important to measure the quality of this

force law. The performance evaluation module evaluates the optimized force laws

with respect to four metrics: collisions, connectivity, reachability, and time to goal.

Again, our 2D simulation world is 900×700 in size, and contains a goal, obstacles

and robots. We evaluated the performance of the optimized force laws with 20 to 100

robots, 20 to 100 obstacles, and a goal in the environment. The goal is always placed at

a random position in the right side of the world, while the robots are initialized in the

bottom left area. As in the training module, the obstacles are randomly distributed

62

throughout the environment, but are kept 50 units away from the initial location of

the robots and the goal to avoid proximity collisions. Each circular obstacle has a

radius Ro of 10, and the square shaped goal is 20×20. When 100 obstacles are placed

in the environment, roughly 5% of the environment is covered by the obstacles (again

similar to (Balch and Hybinette 2000)). The desired separation between robots R is

50, and the maximum velocity Vmax is 20. Robots can sense other robots within a

distance of 1.5R and can sense obstacles within a distance of Ro + 20. The robots

can sense the goal globally. The radius of the robot is 1.

5.3 Performance Metric

After optimization, the best force law is evaluated with our performance module.

The performance module consists of four metrics and these metrics provide us with

valuable measurements of the quality of the evolved force law. The force law evalu-

ation in Chapter 4 considers three different criteria: collisions, cohesion, and time to

goal. Besides these three criteria, in our performance metric we provide an additional

criterion, reachability.

• Collisions: our fitness function added a penalty when the robots collide with

an obstacle. Thus, it is important to measure the number of robot collisions

when the robots are navigating through the obstacle course using the previously

evolved force law. This measurement is taken at every time step within the

permitted time interval and reported as the number of robots collided within

that time interval. When robots collide with obstacles we consider such robots

to be damaged, but they can still move with the formation to the goal.

• Swarm connectivity: One of our main objectives is to have our swarm main-

tains a hexagonal lattice formation until it reaches the goal. To accomplish

63

this objective, we added a penalty to our fitness function when the force laws

were trained. To evaluate the quality of the evolved force law, we measured the

largest number of robots in the swarm that are connected via a communication

path. The connectivity result we provide is the minimum size of the largest con-

nected swarm as the swarm moves to the goal. Two robots are connected if their

separation is ≤ 1.5R. This is an important measure of a robot swarm deployed

as a sensor network, since it is extremely important to maintain communication

path(s) among robots in the sensor network.

• Reachability: If a considerable number of robots do not reach the goal regardless

of higher swarm connectivity, then we are unable to successfully accomplish a

part of our objective task. Robots not reaching the goal is an indication of

lack of quality of the evolved force law. Since we believe the number of robots

reaching the goal is important, we measure the percentage of robots reaching

the goal at the end of the permitted time interval. We consider that a robot

has reached the goal if it is within 4R distance of the goal.

• Time to goal : All objectives in our offline evaluation function depend on the

amount of time permitted for the swarm to reach the goal. We set 2000 sim-

ulation time steps as the permitted time interval for the robots to reach the

goal from the start position. This is also the allotted time interval during EA

learning. At each time step, we measure the amount of robots reaching the goal,

and if 80% of the robots are at the goal, we consider this amount of time as the

“Time to goal”. If this result is less than 80%, we record the “Time to goal”

as 0. Though this is a strict metric of measurement, we think it is important

in some critical applications where the number of robots surviving to reach the

goal matters.

64

Figure 5.2: Performance metric; seven robots in a hexagonal lattice over the goal.

Since our objective is to provide a more complete set of metrics from which mean-

ingful comparisons can be made, the importance of the collision, connectivity, reach-

ability, and time to goal metrics is obvious. Although each metric provides useful

information, a more complete picture arises by considering all. Figure 5.2 shows

seven robots with 100% connectivity and 100% reachability at the goal.

5.4 Newtonian Experimental Results

Tables 5.1 – 5.4 show the number of collisions, connectivity, reachability, and time

to goal results for the optimized Newtonian force law. A ‘–’ entry indicates that at

least 80% of the robots did not make it to the goal within the allotted time period.

All experiments are averaged over 50 independent runs.

It is clear in Tables 5.1 that collisions are not a primary concern. With 100 robots

and 100 obstacles, only four robots collided with obstacles and this is only a 4%

collision rate which is negligible. Interestingly, the number of obstacles do not appear

to be the important factor here, although the number of robots is.

With 20 and 40 robots, the connectivity remains low (see Table 5.2), but with

more than 40 robots, the connectivity is amazingly high at 100%.

65

Obstacles
robots 20 40 60 80 100

20 0 0 0 0 0
40 0 0 0 0 0
60 0 0 0 2 3
80 0 0 3 3 3
100 0 2 2 4 4

Table 5.1: Number of robots that collided with obstacles using the Newtonian force
law.

Obstacles
robots 20 40 60 80 100

20 3 5 10 8 10
40 11 17 25 21 23
60 60 60 60 60 60
80 80 80 80 80 80
100 100 100 100 100 100

Table 5.2: Minimum number of robots that remain connected using the Newtonian
force law.

Obstacles
robots 20 40 60 80 100

20 100% 100% 95% 84% 80%
40 100% 97% 72% 55% 52%
60 0% 0% 0% 0% 0%
80 0% 0% 0% 0% 0%
100 0% 0% 0% 0% 0%

Table 5.3: Percentage of robots reaching the goal using the Newtonian force law.

66

When there are 20 robots, more than 80% of the robots reach the goal, but with

40 robots the number that reach the goal reduces with the increasing number of

obstacles (see Table 5.3). When the number of robots is above 40, no robots reach

the goal.

Obstacles
robots 20 40 60 80 100

20 1160 1260 1290 1530 1920
40 1680 1790 – – –
60 – – – – –
80 – – – – –
100 – – – – –

Table 5.4: Time taken by 80% of robots to reach the goal using the Newtonian force
law.

Table 5.4 shows the amount of time taken by at least 80% of the robots to reach

the goal. When there are 20 robots, more than 80% of the robots reach the goal with

the time taken to reach the goal increasing with the number of obstacles. When there

are 40 robots, with 20 and 40 obstacles, 80% of the robots are capable of reaching

the goal within the time interval of 2000 time steps. When there are more than 40

robots, none of the robots reach the goal within the time interval of 2000 time steps.

When there are less than 40 robots, some reach the goal (Table 5.3). The time

to reach the goal increases as the number of obstacles increases. However, it is clear

that this is achieved by fragmenting the formation into small parts (Table 5.2). When

there are more than 40 robots, none reach the goal (within the time period). Instead,

the structure remains connected, but the strict rigidity of the structure prevents it

from making good progress through the obstacle field. It is clear from these results

that training with 40 robots does not yield a Newtonian force law that scales to a

larger number of robots.

67

5.4.1 Solid Behavior

The Newtonian force law is effective in creating solid structures. This emergent

behavior of the Newtonian force law allows us to create rigid structures with very

high connectivity, but the major disadvantage is that it reduces the reachability of

robots. Another disadvantage is that the Newtonian force law does not scale well to

a large number of robots. Our observations show that given a longer time period,

the Newtonian force law is capable of improving reachability, but this is not desirable

due to time constraints in critical missions.

5.5 LJ Experimental Results

Tables 5.5 – 5.8 show the collision, connectivity, reachability, and time to goal results

for the optimized LJ force law. All experiments are averaged over 50 independent

runs.

Obstacles
robots 20 40 60 80 100

20 0 0 0 0 0
40 0 0 0 0 0
60 0 0 0 0 0
80 0 0 0 2 2
100 0 1 3 3 4

Table 5.5: Number of robots that collided with obstacles using the LJ force law.

Again, it is clear that collisions are not a primary concern. As before, the number

of obstacles does not appear to be the important factor here, although the number

of robots is. The differences in collision results between the LJ and the Newtonian

force law are statistically insignificant.

68

Obstacles
robots 20 40 60 80 100

20 10 10 11 11 11
40 23 23 23 23 23
60 37 37 37 37 37
80 52 52 53 53 53
100 67 67 67 68 68

Table 5.6: Minimum number of robots that remain connected using the LJ force law.

Compared to the Newtonian force law, LJ connectivity remains low. Using the

Newtonian force law with 60 – 100 robots, the connectivity remained 100%, but with

the LJ force law the connectivity remains around 60%.

Obstacles
robots 20 40 60 80 100

20 100% 100% 98% 95% 95%
40 100% 100% 98% 98% 98%
60 100% 100% 98% 98% 98%
80 100% 100% 99% 98% 98%
100 100% 100% 99% 98% 98%

Table 5.7: Percentage of robots reaching the goal using the LJ force law.

Regardless of the number of robots and obstacles, the percentage of robots reach-

ing the goal using the LJ force law remains higher than 95%. This is a significant

improvement over the reachability results we attained using the Newtonian force law.

Comparing Table 5.8 with Table 5.4 clearly shows that the robots trained with

the LJ force law reach the goal faster than the robots trained with the Newtonian

force law.

Using the LJ force law, almost all of the robots make it to the goal, in all cir-

cumstances. The time to reach the goal increases slowly as the number of obstacles

69

Obstacles
robots 20 40 60 80 100

20 470 480 490 510 520
40 520 530 560 560 580
60 570 570 600 600 620
80 610 620 640 650 660
100 640 650 670 680 690

Table 5.8: Time taken by 80% of robots to reach the goal using the LJ force law.

and robots increases (with the number of robots having a larger effect). Also, swarm

connectivity remains reasonably high, ranging from 50% to 68%. Interestingly, swarm

connectivity increases as the number of robots increases and is almost totally unaf-

fected by the number of obstacles. In contrast with the Newtonian force law, the LJ

force law (which is trained with 40 robots) scales well with larger numbers of robots.

This provides evidence that the LJ force law is a good model for the swarm behavior

that we desire.

5.5.1 Fluid Behavior

Observation of the system behavior shows that the formation acts like a viscous fluid

rather than a solid. Although the formation is not rigid, it does tend to retain much of

the hexagonal structure. Deformations and rotations of portions of the fluid are tem-

porary manifestations imposed by the obstacles. Hence, the added flexibility of this

formation (over that achieved by the Newtonian force law) has a significant impact

on behavior. The optimized LJ force law provides low collision rates, very high goal

reachability rates within a reasonable period of time, and high swarm connectivity.

Figure 5.3 shows a sequence of snapshots of 50 robots navigating around a large

obstacle. Robots act as a viscous fluid while avoiding the obstacle.

In the first snapshot, robots are in a fully connected sensor network and are

70

Figure 5.3: Fifty robots navigating around a large obstacle toward a goal. Robots
maintain full connectivity while avoiding the obstacle by acting as a viscous fluid,
using the LJ force law.

navigating towards the goal, but the robots have not faced the obstacle. The second

snapshot shows the swarm starting to flow around the obstacle on two fronts while

maintaining 100% connectivity. The third snapshot shows the robots on the two

fronts merging back together. In the final snapshot, the robots are back in a cohesive

formation when they have reached the goal. We observe that when the swarm reaches

the obstacle, it navigates around the obstacle as a viscous fluid while maintaining

100% connectivity and provides 100% reachability. This fluid type property of the

LJ force law is an emergent behavior of the swarm.

71

5.6 Further Analysis of Force Laws

To further analyze our system, we also collected data concerning the change in the

connectivity and the percentage of robots reaching the goal over time. The resulting

graphs are far too numerous to present here, but we present representative examples.

A complete set of reachability results can be found in Appendix I and a complete set

of connectivity results can be found in Appendix II. All graphs are averaged over 50

independent runs.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 and 100 Robots Through 100 Obstacles Over 2000 Time Steps

Newtonian_20_100

Newtonian_100_100

LJ_20_100

LJ_100_100

Figure 5.4: Change in connectivity over 2000 time steps for 20 and 100 robots through
100 obstacles using the Newtonian and LJ force laws.

Figure 5.4 illustrates the change in connectivity of the swarm over time. Two sets

of results are presented in this graph. The curves at the top are for 100 robots moving

through 100 obstacles. The robots controlled by the Newtonian force law remain fully

connected (although, as we know from the prior results, this is because the formation

has not succeeded in reaching the goal). However, the swarm connectivity for the LJ-

72

controlled robots drops after 200 time steps as the formation begins to move through

the obstacle field. After 400 time steps, the formation connectivity increases as the

robots reach the goal.

The curves at the bottom are for 20 robots moving through 100 obstacles. In this

situation the Newtonian-controlled robots arrive at the goal, and the swarm connec-

tivity drops after 800 time steps and increases after roughly 1300 steps. Because the

LJ-controlled formation moves much more quickly, the formation connectivity drops

after 200 time steps and increases after roughly 300 steps. It is interesting to note that

the LJ-controlled swarm does not break apart as much as the Newtonian-controlled

swarm.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 and 100 Robots Through 100 Obstacles Over 2000 Time Steps

Newtonian_20_100

Newtonian_100_100

LJ_100_100

LJ_20_100

Figure 5.5: Percentage of 20 and 100 robots reaching goal through 100 obstacles over
2000 time steps using the Newtonian and LJ force laws.

Figure 5.5 shows how the number of robots reaching the goal changes with time.

Again, two sets of results are presented, for 20 and 100 robots moving through 100

73

obstacles. The two left-most curves are for the LJ-controlled robots. Note, regardless

of the number of obstacles, robots start to arrive at the goal at roughly the same time

(300 time steps). With 20 robots, they all have arrived at the goal by approximately

500 time steps. This indicates that all robots arrived at the goal within a 200 time

step interval – a relatively narrow band in time. Increasing the number of robots to

100 increases the time interval to only 500 steps.

The other two curves are for the Newtonian-controlled robots. With 20 robots,

they start to reach the goal at 1000 time steps, and the interval is approximately 200

time steps. When there are 100 robots, none reach the goal within the allotted time

period.

5.7 Safety Zone

The concept of a “safety” zone was introduced in (Balch and Hybinette 2000). The

static obstacles are modeled with three layers of repulsive potentials as shown in the

Figure 5.6. When the robot is beyond the sphere of influence (S), no repulsion is

generated. Within the sphere of influence, repulsion increases linearly until the robot

reaches the safety margin. When the robot is within the safety margin (M), the

magnitude of repulsion is ∞.

Our physicomimetics framework does not assume the existence of a safety zone

around obstacles. The force laws evolved with the EA produce behavior where the

robots skirt the obstacles as closely as possible. This is consistent with the general

physicomimetics framework, where robots move in a fashion that minimizes energy

usage. However, as noted above, this can lead to collisions. In this section we examine

the trade-offs induced by the addition of a safety zone. Our EA did not learn the

force law with a safety zone around the obstacles. This experiment measures the

74

Figure 5.6: Three layered safety zone. The obstacle is represented as a black circle in
the middle, and r is the distance from a robot to the center of the obstacle.

quality of the evolved force law when there is a safety zone around the obstacles.

We performed the same experiments as before, for 20 and 100 robots with varying

number of obstacles. All obstacles were given a safety zone of size 5. Hence, robots

can sense obstacles within a distance of Ro + 25, where Ro is 10. Again, the robots

were allowed 2000 time units to reach the goal. If the distance to a robot from the

center of the obstacle is less than 20, the robot senses the maximum repulsive force,

Fmax. When this distance is greater than 20, the robots sense the normal force as

with the previous method without the safety zone. Using the safety zone, we extended

the range at which obstacles are sensed and also strengthen the repulsion near the

obstacle. A complete set of results with safety zone for both Newtonian and LJ force

laws can be found in Appendix III.

5.7.1 Newtonian Experimental Results

The introduction of the safety zone eliminated all collisions of robots with obstacles,

and the swarm connectivity results were similar. However, reachability was greatly

reduced and the time to reach the goal increased (Tables 5.9 and 5.10).

75

Obstacles
robots 20 40 60 80 100

20 96% 3% 1% 0% 0%
100 0% 0% 0% 0% 0%

Table 5.9: Percentage of robots reaching the goal using Newtonian force law and
safety zone.

Obstacles
robots 20 40 60 80 100

20 1850 – – – –
100 – – – – –

Table 5.10: Time taken by 80% of robots to reach the goal using Newtonian force law
and safety zone.

The results were not unexpected. Since the Newtonian force law produces a

structure that acts like a solid, the addition of the safety zone makes it more difficult

for the formation to rotate and counter-rotate (an emergent property of the system)

through the obstacles.

5.7.2 LJ Experimental Results

As with the Newtonian force law, the introduction of the safety zone eliminated all

collisions of LJ-controlled robots with obstacles, and the swarm connectivity results

were similar.

Obstacles
robots 20 40 60 80 100

20 100% 100% 73% 60% 63%
100 100% 99% 90% 86% 80%

Table 5.11: Percentage of robots reaching the goal using LJ force law and safety zone.

76

Obstacles
robots 20 40 60 80 100

20 610 660 – – –
100 820 900 1050 1200 1740

Table 5.12: Time taken by 80% of robots to reach the goal using LJ force law and
safety zone.

Once again, reachability was reduced and the time to reach the goal increased.

However, the reduction in performance (see Tables 5.11 and 5.12) is not nearly as

severe as with the Newtonian-controlled robots. The additional flexibility of the

viscous fluid works far better.

5.7.3 Further Analysis of Safety Zone

Figures 5.7 and 5.8 show the results of the same experiment, but with the addition

of the safety zones around all obstacles. As noted earlier, safety zones remove all

collisions, but the impact on reachability is clear. Even with only 20 robots, the

performance with the Newtonian force law is severely impacted. The performance of

the LJ-controlled robots is also impacted but to a lesser extent. The time interval that

the robots arrive at the goal remains relatively unaffected except for the “LJ 100 100”

(more than 80% reach the goal within allotted time limit of 2000). The number of

robots reaching the goal is definitely compromised. The swarm connectivity remains

quite similar to earlier connectivity results with no safety zones.

5.8 Summary

This chapter presented a novel extension to our physicomimetics framework, with the

use of a generalized Lennard-Jones force law. We then summarized how we tested the

force laws within the context of moving robotic swarm formations through obstacle

77

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 & 100 Robots Through 100 Obstacles -- With Safety

Newtonian_100_100

Newtonian_20_100

LJ_100_100

LJ_20_100

Figure 5.7: Change in connectivity over 2000 time steps for 20 and 100 robots through
100 obstacles using Newtonian and LJ force laws with a safety zone around obstacles.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 & 100 Robots Through 100 Obstacles -- With Safety

Newtonian_20_100

Newtonian_100_100

LJ_100_100

LJ_20_100

Figure 5.8: Percentage of 20 and 100 robots reaching goal through 100 obstacles
over 2000 time steps using Newtonian and LJ force laws with a safety zone around
obstacles.

78

fields to a goal.

In addition, we presented novel metrics of performance, namely, the number of

robots that collide with obstacles, their connectivity, the number of robots that reach

the goal, and the time taken by at least 80% of the robots to reach the goal. Although

each metric provides useful information, a much better picture arises by considering

all metrics. Our empirical analysis is methodical, ranging from 20 to 100 robots, and

ranging from 20 to 100 obstacles.

Our results indicate that the LJ-controlled robots have far superior performance

to our Newtonian-controlled robots. This is because the emergent behavior of the

LJ-controlled swarm is to act as a viscous fluid, generally retaining good connectivity

while allowing for the deformations necessary to smoothly flow through the obstacle

field. Despite being trained with only 40 robots, the emergent behavior scales well

to larger numbers of robots. In contrast, the Newtonian-controlled swarm produces

more rigid structures that have more difficulty maneuvering through the obstacles.

Furthermore, performance drops dramatically when there are more than 40 robots.

Table 5.13 summarizes the results.

Newtonian LJ
Robots 40 60 80 100 40 60 80 100
Collisions 0 3 3 4 0 0 2 4
Connectivity 23 60 80 100 23 37 53 68
Reachability% 52 0 0 0 98 98 98 98
Time to Goal by 80% – – – – 580 620 660 690

Table 5.13: Summary of results for 40 – 100 robots, with 100 obstacles.

Finally, we used the metrics to consider the trade-offs that occur when a safety

zone is introduced around the obstacles. As expected, collisions never occur, but

significant reductions in reachability arise. The connectivity of the swarm is similar

79

to the results seen without the safety zone.

Chapter 6

Online Learning

6.1 Introduction

Swarm engineering is difficult due to numerous constraints, such as noise, limited

range of interaction with other robots, delayed feedback, and the distributed auton-

omy of the robots. One potential solution is to automate the design of multi-robot

swarms in simulation as we have done in Chapter 4, using evolutionary algorithms

(EAs) (Grefenstette 1989; Wu, Schultz, and Agah 1999). In this paradigm, the EA

evolves the behaviors of the agents (their local interactions) such that the global task

behavior emerges. A global observer monitors the collective and provides a measure

of performance to the individual agents. Agent behaviors that lead to desirable global

behavior are hence rewarded, and the collective system is gradually evolved to provide

optimal global performance.

There are several difficulties with this offline approach. First, a global observer

may not exist. Second, some (but not all) agents may experience some form of

reward for achieving task behavior, while others do not. Third, this reward may

be delayed or may be noisy. Fourth, the above paradigm works well in simulation

(offline) but is not feasible for real-world online applications where unexpected events

occur. Finally, the above paradigm may have difficulty evolving different individual

behaviors for different agents (heterogeneity vs homogeneity).

80

81

6.2 Constraints With Offline Learning

Offline learning in simulation provides the capability of controlling robot parameters

as well as the environment parameters. These capabilities do not exist when the

robots are in the field, and the robot swarm must quickly learn and adapt to a new

environment. If the robots learn their aggregate behavior in simulation and they are

introduced to a new environment, it is certain that the robots will not successfully

accomplish the task due to several constraints such as:

• non-existence of a global observer: in simulation, the global observer assigns a

fitness value to each individual based on its performance in the environment.

The environment is mostly static in nature and the robots evolve an aggregate

behavior to accomplish a task in that specific environment. When the robots

are introduced to a new environment with the rules they learned in simulation,

these rules are insufficient. If a global observer does not exist in the new envi-

ronment to provide performance feedback, robots will not accomplish the task

successfully.

• noise: noise in the system could be introduced by several sources such as sensors,

non-deterministic action by the robots, and environmental changes. Filtering

out noise in real world is extremely difficult and challenging. Noisy environments

may cause the robots to delay their response, and this may even jeopardize time

critical missions.

• only a subset of the robots receive a reward and reward may be delayed: noise

and discretization of robot sensors and effectors may cause loss of information.

This could either delay the reward to the robots or provide the reward to only

a subset of robots. Lack of reward or delayed reward could further degrade the

82

swarm performance.

These constraints in offline learning approaches impede the continued evolution of

aggregate swarm behavior in changing environments. Thus, it is absolutely necessary

to design new paradigms for swarm online learning. Our objective is to design a

conceptual paradigm for swarm online learning that can be used regardless of the

techniques used. This online learning paradigm has the ability to allow robots to

learn and adapt to unexpected scenarios in new environments. We propose a new

distributed online learning paradigm for robot swarms; called “Distributed Agent

Evolution with Dynamic Adaptation to Local Unexpected Scenarios” or DAEDALUS.

6.3 Distributed Agent Evolution with Dynamic Adaptation to Local Un-

expected Scenarios - DAEDALUS

With the DAEDALUS paradigm, we assume that agents (whether software or hard-

ware) move throughout some environment. As they move, they interact with other

agents. These agents may be of the same species or of some other species (Spears

1994). Agents of different species have different roles in the environment. The goal is

to evolve agent behaviors and interactions between agents, in a distributed fashion,

such that the desired global behavior occurs1.

Let us further assume that each agent has some procedure to control its own

actions in response to environmental conditions and interactions with other agents.

The precise implementation of these procedures is not relevant; thus they may be pro-

grams, rule sets, finite state machines, real-valued vectors, force laws, or any other

procedural representation. Agents have a sense of self-worth, or “fitness”. Agents

that experience direct performance rewards have higher fitness. Other agents may

1The work by (Watson, Ficici, and Pollack 2002) is conceptually similar and was developed
independently.

83

not experience any direct reward but may in fact have contributed to the agents

that did receive direct reward. This “credit assignment” problem can be addressed

in numerous ways, including the “bucket brigade” algorithm or the “profit sharing”

algorithm (Grefenstette 1988). Assuming that a set A of agents has received some

direct reward, both algorithms provide reward to the set B of agents that have inter-

acted (and helped) those in A. Further trickle-back rewards are also given to those

agents in set C that helped those in B, and so on. Agents that receive no rewards

lose fitness. If fitness is low enough, agents stop moving or die.

6.3.1 Distributed Evolution

Evolution in multi-robot systems is challenging in both a conceptual and applied per-

spective. Evolving the aggregate behavior of the collective through deliberations with

neighbors and with limited sensory capabilities is much more difficult. These delib-

erations among robots may occur at different stages of the evolution under different

constraints, but preserving the aggregate behavior and accomplishing a task is of vital

importance to us. Our focus is to provide our robots with intelligent capabilities so

that the robots execute these capabilities in distributed fashion.

In our DAEDALUS paradigm, evolution occurs when individuals of the same

species interact. Those robots with high fitness give their procedures to agents with

lower fitness. Evolutionary recombination and mutation provide necessary perturba-

tions to these procedures, providing increasing performance and the ability to respond

to environmental changes. Different species may evolve different procedures, reflecting

the different niches they fill in the environment.

84

6.3.2 DAEDALUS for Obstacle Avoidance

Each robot of the swarm is an individual in a population that interacts with its

neighbors. Each robot contains a slightly mutated copy of the optimized force law

rule set found with offline learning. This ensures that our robots are not completely

homogeneous. We allowed this slight heterogeneity because when the environment

changes some mutations perform better than others. The robots that perform well in

the environment will have higher fitness than the robots that perform poorly. When

low fitness robots encounter high fitness robots, the low fitness robots ask for the

high fitness robot’s rules. Hence, better performing robots share their knowledge

with their poorer performing neighbors.

When we apply DAEDALUS to obstacle avoidance, we focus on two aspects of our

swarm: reducing obstacle-robot collisions and maintaining the cohesion of the swarm.

Robots are penalized if they collide with obstacles and/or if they leave their neighbors

behind. The second scenario arises when the robots are left behind in cul-de-sacs.

This causes the cohesion of the formation to be reduced.

Due to the superiority of the LJ force law over the Newtonian force law, we decided

to use the LJ force law to test our online learning paradigm.

6.4 Transition from Offline to Online Learning

Our prior applications of EAs to design multi-agent systems have used the offline ap-

proach – a global observer assigns fitness to agents based on their collective behavior.

In the next section, we show how DAEDALUS can be applied to the obstacle avoid-

ance task in an online environment. In this application, recombination and mutation

operators provide the ability to respond to environmental changes (which can include

the addition and/or removal of agents).

85

Figure 6.1: A long corridor with randomly placed obstacles and five goals.

6.4.1 Methodology

Each robot of the swarm contains a slightly mutated (1% mutation rate) copy of

the optimized LJ force law rule set found with offline learning. Again the force law

rules are mutated with Gaussian mutation (see Figure 4.2). All the robots have the

same initial fitness or “worthiness” of 1000 at the start. This fitness value does not

correlate with any other system parameters. There are five goals to achieve in a long

corridor, and between each randomly positioned goal is a different obstacle course

with a total of 90 randomly positioned obstacles. The online 2D world is 1600 × 950,

which is larger than the offline world. In our changed environment, each obstacle

has a radius of 30 compared to the offline obstacle radius of 10. So more than 16%

of the online environment is covered with the obstacles. Compared to the offline

environment, the online environment triples the obstacle coverage. We also increase

the maximum velocity of the robots to 30 units/sec, allowing the robots to move

1.5 times faster than in the offline environment. The LJ force law learned in offline

mode is not sufficient for this more difficult environment, producing collisions with

obstacles (due to the higher velocity) and robots that never reach the goal (due to

the high percentage of obstacles). The remaining system settings are kept the same

as with the offline methodology. Figure 6.2 shows an example of the more difficult

environment.

Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to the

86

Figure 6.2: 60 robots moving to the goal. The larger circles represent obstacles, while
the square in the upper right represents the goal. The larger obstacles make this
environment far more difficult for the robots to traverse.

next goal, but the robots that had collisions and made it to the goal are allowed to

proceed to the next goal. We assume that damaged robots can be repaired once they

reach a goal.

6.4.2 Collision Avoidance

To measure the performance of the DAEDALUS approach, an experiment is carried

out with 60 robots, 5 goals in the long corridor, and 90 obstacles in between each goal.

Our focus in this experiment is to test the ability of DAEDALUS to learn to avoid

robot collisions. The experiment was averaged over 100 runs with different robot,

goal, and obstacle placements. Each robot is given equal initial fitness and “seeded”

with a mutated copy of the optimized LJ force law learned in offline mode. If a

robot collides with an obstacle, its fitness is reduced. Whenever a robot encounters

another robot with higher fitness, it takes the relevant parameters pertaining to the

obstacle-robot interaction of the better performing robot.

87

6.4.3 Experimental Results

Figure 6.3 shows the ratio of the number of robots that collided with obstacles versus

the number of robots that survived to reach the goals. The graph indicates that after

only 4 goals, the percentage of robots that collide with obstacles has dropped from

about 38% to less than 8%. Inspection of the obstacle-robot parameters indicates

that the repulsive component increased through the online process of mutation and

the copying of superior force laws.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5

R
ob

ot
s

C
ol

lid
ed

/R
ob

ot
s

S
ur

vi
ve

d

Goal Number

Percentage of Robots that Collide with Obstacles

Figure 6.3: The ratio of colliding robots versus the number of surviving robots for 60
robots moving through 5 goals with 90 obstacles in between each goal.

It is apparent that robots do not have difficulty learning to avoid obstacles using

the LJ force law. Online learning improves the robot’s ability to adapt in the new

environment and to avoid large obstacles. The slightly mutated force law rules which

are learned offline provided the robots the ability to learn and adapt to the online

environment more quickly.

88

6.5 Survivability

Survivability of our robots is extremely important for several reasons. First, if too

many robots die while they are in the field, accomplishing a task becomes difficult.

Second, this could affect the diversity of the swarm. Diversity is important since

the robots share their genetic makeup to improve their performance. Thus, we are

motivated to improve the survivability of the robots in the swarm.

Our first experiment (with collision avoidance) did not attempt to alleviate the

situation where robots are left behind; in fact, only roughly 48% of the original 60

robots reach the final goal (see Figure 6.4, lower line). This is caused by the large

number of cul-de-sacs produced by the large obstacle density. Our second experiment

attempts to alleviate this problem by focusing on the robot-robot interactions. Our

assumption is that the LJ force law needs to provide stronger cohesion, so robots

aren’t left behind.

6.5.1 Methodology

If robots are stuck in cul-de-sacs (i.e. they make no progress towards the goal) and

they sense neighbors, they slightly mutate (1% mutation rate) the robot-robot inter-

action parameters of their force laws. In a situation in which they do not sense the

presence of neighbors and do not progress towards the goal, they rapidly mutate (5 %

mutation rate) their robot-goal interaction causing a “panic behavior”. These rela-

tively large perturbations of the force law allow the robots to escape their motionless

state.

89

6.5.2 Experimental Results

Figure 6.4 shows the results of this second experiment. In comparison with the first

experiment (with survival rates of 48%), the survival rates have increased to 63%.

As a control experiment, we ran our offline approach on this more difficult task.

After five goals, the survival rate is about 78%. Recall that the offline results are

obtained by running an EA with a population size of 100 for 100 generations with

each individual averaged over 50 random instantiations of the environment. As can

be seen, the DAEDALUS approach provides results somewhat inferior to the offline

approach, in real time, while the robots are in the environment.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

R
ob

ot
s

S
ur

vi
ve

d

Goal Number

Number of Robots that Survived at Each Stage

Survival in Offline

Survival is Important(online)

Collisions are important(online)

Figure 6.4: A comparison of (a) the number of robots that survive when rules are
learned using offline learning, (b) the number of robots that survive when using online
learning (where the focus is on reducing collisions), and (c) the number of robots that
survive when using online learning (and the focus is on survivability).

Although not shown in the graph, it is important to point out that the collision

rates were not affected in the second experiment. Hence, we believe that it is quite

90

feasible to combine both aspects in the future. Collision avoidance can be improved

via mutation of the obstacle-robot interaction, while the survival rate can be improved

via mutation of the robot-robot interaction and robot-goal interaction.

6.5.3 Difficulty of Survival

Surviving in one environment with the force laws learned in another environment is

difficult. In the offline simulation the robots did not learn to avoid cul-de-sacs; the

obstacle density did not produce cul-de-sacs, leaving sufficient space for the robots

to navigate through. In the online environment robots are not capable of completely

avoiding cul-de-sacs, so they get stuck behind these cul-de-sacs. Though we are able

to improve the robot survival via mutation, we were unable to achieve the survival of

all of the robots that are initially fielded. Our intention is to maintain the survival

at a healthy level so that our swarm still maintains diversity.

6.6 Summary

Traditional approaches to designing multi-agent systems are offline, and assume the

presence of a global observer. However, this approach will not work in real-time

online systems. This chapter presented a novel approach to solving this problem,

called DAEDALUS, where we showed how concepts from population genetics can

be used with swarms of agents to provide fast online adaptive learning in changing

environments.

Our obstacle avoidance case study is used in this chapter to illustrate the feasibility

of this approach. We tested our robots in a long corridor with five goals placed

among randomly initialized obstacles. We initialized our robots with slightly mutated

copies of the LJ force law optimized using the offline approach. Our first experiment

91

attempted to alleviate the increased number of collisions due to the size of obstacles

in the new environment. We presented results showing that robots were capable of

quickly adapting to the new environments (by learning how to avoid obstacles) by

sharing and mutating their force laws.

Though we were able to alleviate the number of collisions, this did not help robot

survival in the new environment, due to a large amount of cul-de-sacs. We presented

our results for collision reduction and online survivability and compared this results

to the results of robots trained in the offline environment.

Chapter 7

Obstructed Perception

7.1 Introduction

When robots are in complex environments and are required to interact with their

neighbors, it is important for the robots to have adequate sensor capabilities. One

possible problem is that even the most sophisticated sensors may not guarantee satis-

factory interactions among the robots due to obstacles blocking the robot’s perception

of the search space. We refer to this scenario as obstructed perception.

This is quite similar to the idea of partially observable domains. In partially

observable domains, robots cannot continually monitor neighbors and model their

world due to the computational burden of such monitoring and modeling. The lack of

such monitoring and modeling leads to increased uncertainty about the state of other

agents (Varakantham, Maheswaran, and Tambe 2004). This partial observability

can introduce uncertainty in agent state information, causing degradation of robot

performance. We refer to this as obstructed perception. Obstructed perception follows

a strict interpretation of sensor failure.

Robots face increasing amounts of sensor obstruction when they act in environ-

ments with large obstacle density. This causes the robots to either observe their

environment partially or not at all. Our obstructed perception method follows the

latter. Another reason for partial observation is limited sensor distance of our robots.

92

93

Sensors with limited distance can reduce the robot’s interactions with other robots.

A decrease in interactions among swarm members causes a reduction in population

diversity making it more difficult for the swarm to improve task efficiency.

We use our DAEDALUS paradigm to improve swarm efficiency in accomplishing

a task with obstructed perception. DAEDALUS is designed to improve swarm per-

formance when the robots are in complex challenging environments. Our objective is

to apply the DAEDALUS paradigm to improve robot survivability and reduce colli-

sions in high density obstacle environments where the robots have their perception

obstructed.

7.2 Learning Dynamic Environments with Obstructed Perception

When a robot can not see another robot, due to the presence of obstacles, we call

this “obstructed perception.” When the robot’s line of sight lies along an edge of

an obstacle, the robots are capable of sensing each other. Surprisingly, this is not

generally modeled in prior work in this area (Balch and Hybinette 2000). Figure 7.1

shows an example scenario of obstructed perception. The larger circle represents an

obstacle, and A and B represent robots. We define minD to be the minimum distance

from the center of the obstacle to the line of sight of robot A and robot B, and r is

the radius of an obstacle. If r > minD, robot A and robot B have their perception

obstructed.

We utilize a parameterized description of a line segment (Haeck 2002) to find the

minD.

term1 = (((1 − q) ∗ Xa + q ∗ Xb) − Xc)
2

term2 = (((1 − q) ∗ Ya + q ∗ Yb) − Yc)
2

94

Figure 7.1: The sensing capability of two robots (A, B) is obstructed by a large
obstacle (C).

minD =
√

[term1 + term2] (7.1)

where Xa, Xb are the x positions of robots A and B, Ya, Yb are the y positions of

robots A and B, Xc and Yc are the x and y positions of the center of an obstacle, and

q is the minimum function that is defined by

((Xc − Xa) ∗ (Xb − Xa) + (Yc − Ya) ∗ (Yb − Ya))
(

(Xb − Xa)
2 + (Yb − Ya)

2
) (7.2)

7.3 Diversity in Swarms

Diversity refers to the non-uniformity or the variation in species. In Darwin’s theory

of evolution, variation is one of the principle factors that contribute to generate

diverse species. The concept of diversity is fundamental in disciplines such as biology,

95

ecology, sociology, and genetics, but there are many issues that remain unresolved

when the concept of diversity is applied in multi-agent and swarm robotics research.

Addressing diversity in a swarm is important; the lack of diversity or a degradation

of diversity leads to fitness stagnation of the swarm, causing reduced performance.

Designing and developing algorithms for diverse populations of a swarm of robots

that perform well in complex environments is challenging. Addressing this issue

is much more difficult if the robots are in complex dynamic environments rather

than computer simulated static environments. Emergent aggregate behavior of a

diverse population of robots is still desirable, and providing behavioral assurance and

measuring the swarm performance is not trivial. Categorizing robots into groups and

measuring their emergent properties is one way to overcome the challenges.

The robots in a swarm can be categorized into groups based on their differences.

We could relate these differences to the robot’s physical structure, algorithmic dif-

ferences, mechanical properties, skills, behavioral aspects and possibly many more.

These types of classifications do not provide a guarantee that a robot belongs to an

exact category due to the complex nature of a swarm that can react and behave dis-

tinctly. Though these classifications of swarms are popular, traditionally swarms have

been classified as either heterogeneous or homogeneous depending on the differences

previously mentioned. One of the most important units of classification of robots

into either heterogeneous or homogeneous groups is the metric used for assessing the

swarm performance.

We present a classification of robots in a swarm based on their genetic makeup

(the force law). We classify our robots using their mutation rate. Each robot is

assigned a predefined mutation rate and the robot mutates its copy of the force law

based on the circumstances it faces in the environment. As an example, a robot may

mutate its force law with the assigned mutation rate if the robot is stuck behind a cul-

96

de-sac, but at the same time another robot may completely avoid the same cul-de-sac

without any mutation due to the higher quality of its force law. In these scenarios,

our internal performance metric (the robot’s worthiness) decides the robot’s survival.

7.3.1 Homogeneous Swarms

A homogeneous swarm consists of robots with identical software and hardware ca-

pabilities. These capabilities may vary from one swarm system to another swarm

system, but the capabilities among robots within the same swarm remain identical.

According to Li homogeneous systems represent a special case of heterogeneous sys-

tems (Li, Martinoli, and Abu-Mostafa 2003). Depending on the environment and

task constraints, a homogeneous solution may not be a system that achieves the best

results. We have presented our offline results with homogeneous swarms in Chapter 5.

Our homogeneous swarm was capable of producing superior results in an environment

similar to the one that it learned, but given different environmental constraints the

swarm fails to achieve the desired behavior (see Figure 6.4).

7.3.2 Heterogeneous Swarms

A heterogeneous swarm consists of robots that are physically different or have different

software or hardware capabilities. Our robot swarm in the online learning environ-

ment is a heterogeneous swarm. We slightly mutated our LJ force law and created

a heterogeneous swarm in Chapter 6. We use this heterogeneous swarm to test the

feasibility of our DAEDALUS paradigm in a complex dynamic environment. In this

chapter, we apply our DAEDALUS paradigm to online learning with heterogeneous

swarms that are capable of exchanging their mutation rates. We also increased the

task constraints by introducing obstructed perception to our heterogeneous swarm.

97

7.4 Swarm Learning Methodology with Obstructed Perception

To deal with obstacle avoidance, we have separate force laws for the robot-robot

interactions, robot-goal interactions, and robot-obstacle interactions. Hence ε, c,

d, and Fmax must be optimized for all three forms of interactions, resulting in 12

parameters. Robot-robot and robot-obstacle interactions are local (i.e., robots can

only sense nearby robots and obstacles). The robots are trained with an offline EA in

an offline environment. The environment is 900 × 700 with 90 randomly positioned

obstacles, each of radius 10. This yields about 5% obstacle coverage, which is typical

of most studies in this area (Balch and Hybinette 2000). The robots move with

maximum velocity 20 units/sec. The EA does not have great difficulty producing an

optimized LJ force law that avoids obstacles while allowing all robots to reach the

goal.

However, the online environment is far more difficult. The online 2D world is 1600

× 950, and each of the 90 obstacles has a radius of 30 compared to the offline obstacle

radius of 10. Therefore, more than 16% of the online environment is covered with the

obstacles, tripling the obstacle density. We also increase the maximum velocity of

the robots to 30 units/sec from 20 units/sec, making the robots move 1.5 times faster

than in the offline environment. Obstructed perception occurs in both the offline and

online environments.

For the online environment, each robot of the swarm contains a slightly mutated

copy of the optimized LJ force law rule set found with offline learning. There are

five goals to achieve in a long corridor, and between each randomly positioned goal is

a different obstacle course with 90 randomly positioned obstacles. The LJ force law

learned in offline mode is not sufficient for this more difficult environment; it produces

robots that never reach the goal (due to the high percentage of obstacles).

98

Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to the

next goal, but robots that collide with obstacles and make it to the goal are allowed to

proceed to the next goal. We assume that damaged robots can be repaired once they

reach a goal. Although noise in dynamic environments is not specifically modeled

in our simulation, it has been shown with actual robots that the physicomimetics

framework is robust with modest amounts of noise (Spears, Gordon-Spears, Hamann,

and Heil 2004). In fact, noise can actually improve performance by overcoming local

optima in the behavior space (Martinson and Payton 2005; Spears and Gordon 1999).

In Chapters 5 and 6, we have shown that the robots easily learned to avoid colliding

with obstacles, so our focus in this chapter is on the survivability of the robots (i.e. the

number of robots that reach a goal). When the robots are left behind in cul-de-sacs,

the number of robots that survive to reach a goal is lowered, causing the cohesion

of the formation to be reduced. We utilized two different methods to improve the

survivability:

• if roboti is not moving (due to an obstacle) and roboti has no moving neigh-

bors, then roboti mutates it’s own robot-goal interactions. This mimics “panic

behavior” seen in animals.

• if roboti is not moving (due to an obstacle in the way) and a neighboring robotj

is moving, then roboti receives robotj’s robot-robot interactions.

We addressed the first method in Chapter 6 and presented our results. We focus on

the second method in this chapter.

7.4.1 Experimental Results

We compared DAEDALUS to three control studies. In the first control study, we

train the robots with an offline EA on small obstacles, and then test them again on

99

small obstacles to verify their performance. In the second control study, we train the

robots with an offline EA on large obstacles and test them on large obstacles. The

purpose of this control study is to clarify the difficulty of the task. Finally, in the

third control study, we train the robots with an offline EA on small obstacles and test

them on large obstacles. The purpose of this study was to see how well the knowledge

learned while avoiding small obstacles transferred to large obstacles. All results are

averaged over 100 runs.

Figure 7.2 shows the results. The y-axis gives the number of robots that survived

to reach the goal at each stage for the four different experiments. The top performance

curve is for the first control study. Note that learning with small obstacles in offline

mode is not difficult, and the robots perform very well in the online environment. This

is due to the fact that the small obstacles make the environment less dense providing

the robots sufficient space to navigate. Out of 60 initial robots released in the online

environment, 93.3% survived to reach the last goal. With such small obstacles (which

is the maximum density examined in the related literature), obstructed perception is

not an important issue.

In the results presented in Chapter 6, robots that learned without obstructed per-

ception on larger obstacles had a reasonably high survival rate (78%). The bottom

(dashed) performance curve shows the effect of obstructed perception (the second

control study). Learning with large obstacles in offline mode with obstructed percep-

tion is very difficult, and the test results show that out of 60 robots released initially

into the online environment only 35% (21 robots) survived to reach the last goal. This

is due to the fact that the environments with larger obstacles create large numbers

of cul-de-sacs that obstruct perception.

The third control study (see“NO DAEDALUS(small–large)”), where offline train-

ing occurs with small obstacles and testing occurs with large obstacles, the results are

100

surprisingly good. Despite an initial drop in performance, performance at the fifth

goal is quite acceptable (out of the initial 60 robots, 41.6% (25 robots) survived to

reach the final goal). This is a 6.6% improvement over the robots that were trained

on larger obstacles. These results run counter to accepted wisdom, which states that

it is best to train on the hardest environments that you will encounter. In fact, this

example demonstrates that training on simpler problems and applying the knowledge

gained to harder problems can potentially provide superior results. Why is this so?

As with developmental psychology, one does not train children on hard problems im-

mediately, instead, we train them on easier problems first, in the hopes that they

will learn the “basics” (which are important building blocks for solving other, more

difficult, problems) more quickly.

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

N
um

be
r

of
 R

ob
ot

s

Goal Number

Survival of 60 Robots in Online Environment with Obstructed Perception

No DAEDALUS(small-large)

No DAEDALUS(small-small)

No DAEDALUS(large-large)

DAEDALUS(small-large)

Figure 7.2: Four different experiments of number of robots surviving. All robots are
trained with obstructed perception and tested with and without DAEDALUS. The
results are averaged over 100 independent runs.

101

If we extend the developmental psychology analogy further, we note that we en-

courage children to experiment and modify their behavior, based on changes in the

environment. Furthermore, they share the lessons learned. This is precisely what

the DAEDALUS system does. The final performance curve in Figure 7.2 shows the

results. With an initial 60 robots, 61.6% or 37 robots survived to reach the last goal.

This is a 26.6% improvement over the robots that learned in an environment with

the larger obstacles, and a 20% improvement over the robots that learned with small

obstacles and tested with the larger obstacles without DAEDALUS. These prelim-

inary results are very promising. Although encouraging the robots (or children) to

explore and experiment does provide an early drop-off in performance (compared to

the “NO DAEDALUS (large-large)” curve), the results after three goals are supe-

rior. This is a classic example of “exploration” vs “exploitation”. Pure exploitation

of learned knowledge is good up to a point, but will eventually fail as the prob-

lems become more difficult. Exploration provides the key to adapt to these changing

environments. DAEDALUS provides just this form of exploration.

7.5 Homogeneous Swarm Learning - Experimental Results

For the DAEDALUS performance curve given above, all robots had the same mutation

rate, which was 5%. Hence, each robot had the same rate of exploration. Although

the rules for each robot may differ, their mutations rates are identical, and we refer to

this system as “Homogeneous DAEDALUS”. However, there are numerous problems

with this approach. First, the results may depend quite heavily on choosing the

correct mutation rate. How is this mutation rate to be chosen? Second, the best

mutation rate may also depend on the environment, and should potentially change

as the environment changes. How is this to be accomplished?

102

Since the mutation rate may have a major effect on performance, we decided to

explore this effect by conducting several experiments with different mutation rates.

Figure 7.3 shows five independent experiments of Homogeneous DAEDALUS. Five

different mutation rates were used: 1%, 3%, 5%, 7%, and 9%. The results are quite

striking. Of the five different mutation rates, only 5% and 7% did well (with about

35 robots surviving to the last goal). Recall that the DAEDALUS performance curve

shown in Figure 7.2 resulted from an arbitrarily chosen mutation rate of 5%. As it

turns out, we were extremely fortunate in our design decision. For example, with

mutation rates of 1%, 3%, and 9%, at most 23 robots survive to reach the final goal.

The performance curve for the 9% mutation rate is especially interesting. Although

promising at first, it appears as if the mutation rate is so high that it eventually

causes an extremely deleterious mutation to appear. Mutation rates of 1% and 3%

are too low to cope with the changed environment.

7.6 Heterogeneous Swarm Learning - Experimental Results

In an attempt to address the problem of choosing the correct mutation rate, we di-

vided the robots into five groups of equal size. Each group of 12 robots was assigned

a mutation rate of 1%, 3%, 5%, 7%, and 9%, respectively. This mimics the behavior

of children that have different “comfort zones” in their rate of exploration. Since

different robots have different mutation rates, we refer to this system as “Hetero-

geneous DAEDALUS”. Figure 7.4 shows the results, in comparison with the three

control studies shown in Figure 7.2. The label “Het.DAEDALUS(small-large)” shows

the survivability of robots with pre-assigned mutation rates. Out of the initial 60

robots, 29 or 48% robots survived to reach the final goal. Although this is higher

than our second and third control studies, it did not produce results as good as the

103

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

N
um

be
r

of
 R

ob
ot

s

Goal Number

Survival of 60 Robots for Different Mutation Rates with DAEDALUS

1%
3%

5%

7%

9%

Figure 7.3: Five different mutation experiments of robots surviving. All robots are
trained with obstructed perception and tested with DAEDALUS. The results are
averaged over 100 independent runs.

results achieved with Homogeneous DAEDALUS using a 5% mutation rate (as shown

in Figure 7.3). In fact, the result at the final goal is essentially identical to the average

of the five performance curves shown in Figure 7.3.

7.6.1 Extended Heterogeneous DAEDALUS Results

In an attempt to improve performance, we again borrowed from the analogy of a

“swarm” of children learning some task. Not only do they share useful information

as to the rules they might use, but they also share meta-information as to the level

of exploration that is actually safe! Very bold children might encourage their more

timid comrades to explore more than they would initially. On the other hand, if a

very bold child has an accident, the rest of the children will become more timid. In

“Extended Heterogeneous DAEDALUS”, five groups of children are again initialized

104

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

N
um

be
r

of
 R

ob
ot

s

Goal Number

Survival of 60 Robots in Online Environment with Obstructed Perception

No DAEDALUS(small-large)

No DAEDALUS(small-small)

No DAEDALUS(large-large)

Het.DAEDALUS(small-large)

Figure 7.4: Number of robots surviving with predefined mutation rates. The mutation
rates are not exchanged. All robots are trained with obstructed perception and tested
with or without DAEDALUS. The results are averaged over 100 independent runs.

with mutation rates of 1%, 3%, 5%, 7%, and 9%. However, in this situation, if a robot

receives the rules from a neighbor (which, again, occurs if that robot is in trouble), it

also receives the neighbor’s mutation rate. In this implementation, children in trouble

not only change their rules, but their mutation rate. Figure 7.5 shows the results of

this study. The curve labeled with “Ex.Het.DAEDALUS(small-large)” refers to the

survivability of robots with pre-assigned mutation rates that also allows the robots

to receive a neighbor’s mutation rate, if the robot receives the neighbor’s rules. The

behavior is quite good. On average, 34 robots survive to reach the final goal, which is

very close to the optimum value of 37 found by the best Homogeneous DAEDALUS

experiment.

105

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3 4 5

N
um

be
r

of
 R

ob
ot

s

Goal Number

Survival of 60 Robots in Online Environment with Obstructed Perception

No DAEDALUS(small-large)

No DAEDALUS(small-small)

No DAEDALUS(large-large)

Ex.Het.DAEDALUS(small-large)

Figure 7.5: Number of robots surviving with predefined mutation rates. The mutation
rates are exchanged. All robots are trained with obstructed perception and tested
with or without DAEDALUS. The results are averaged over 100 independent runs.

7.7 Effect of Mutation in Swarm Learning

We explored the effect of heterogeneous swarms in an online environment and com-

pared our results with the offline homogeneous swarms. We maintained the diversity

in our heterogeneous swarm by allowing robots to exchange their predefined mutation

rates. The robots learned to avoid cul-de-sacs in the online environment and maintain

the diversity of the population. Table 7.1 shows the mutation rates of robots that

survive to reach a goal.

At the beginning, there are five groups of robots. They are initialized with muta-

tion rates of 1%, 3%, 5%, 7%, and 9%. The robots with 1% and 3% mutation rates

had a more difficult time surviving compared to the robots with other three mutation

rates. Thirty seven robots survived to reach the fifth goal, and clearly the 5% and

106

Mutation Rate
robots survive 1% 3% 5% 7% 9%

60-start 12 12 12 12 12
54-goal 1 10 10 11 12 11
47-goal 2 9 8 11 10 9
42-goal 3 6 7 11 10 8
39-goal 4 6 6 10 9 8
37-goal 5 5 6 10 9 7

Table 7.1: The number of robots that survive to reach a goal and their mutation
rates.

the 7% mutation rates performed better than the other three mutation rates. With

1% mutation, seven robots did not reach the fifth goal, and with 9% mutation, five

robots did not reach the fifth goal. Notice that there are still robots with all five

mutation rates surviving in the environment. This still maintains the diversity of the

swarm.

7.8 Summary

This chapter addressed the important issue of “obstructed perception” in learning

behaviors for swarms of robots that must avoid obstacles while reaching a goal. This

issue has been largely absent from the literature. Our obstacle density is also three

times higher than the norm, making obstacle avoidance a far more difficult task.

Since obstructed perception makes the task far more difficult, DAEDALUS had to be

extended. Our first extension was to allow different robots to have different rates of

exploration, which affects the rate at which they change their behavioral rules. The

second extension allowed the robots to also share their rates of mutation, enabling

robots to find the right balance between exploration and exploitation. Results of the

extended system were almost as good as the best results we were able to achieve when

107

the exploration rates were controlled by hand. In summary, this chapter introduced a

framework that allows swarms of robots to not only learn and share behavioral rules

in changing environments (in real time) and but to also learn the proper amount of

behavioral exploration that is appropriate.

Chapter 8

Hardware Implementation

8.1 Introduction

In previous chapters, we presented our approach to designing and implementing robot

swarms that perform the obstacle avoidance task in simulation. In this chapter, we

present our approach to designing and implementing robotic hardware and algorithms

for formation control and the obstacle avoidance task.

While most of our hardware modules are designed and tested in-house, we use

several off-the-shelf hardware components. Our obstacle avoidance hardware module

(OAM) is built in-house at the UW-DRL, and we use off-the-shelf Freescale 68HCS12

microprocessors as the central processing unit. We also design and test a physics-

based control algorithm for robot navigation and obstacle avoidance. We call this

algorithm AP-lite. We use the UW-DRL Maxelbot robot as our robotic platform1.

Maxelbots are fitted with hardware and algorithms for robot localization.

Spears et al. presented a trilateration technique for robot localization (Spears,

Hamann, Maxim, Kunkel, Heil, Zarzhitsky, Spears, and Karlsson 2006). In 2D tri-

lateration, the locations of three base points are known as well as the distances from

each of these three base points to the object to be localized. Looked at visually, 2D

trilateration involves finding the location where three circles intersect. Thus, to locate

1See http://www.cs.uwyo.edu/∼wspears/maxelbot/

108

109

a remote robot using 2D trilateration the sensing robot must know the locations of

three points in its own coordinate system and be able to measure the distances from

these three points to the remote robot. We make use of this trilateration technol-

ogy and extend this work to the obstacle avoidance task using our AP-lite control

algorithm.

Next, we present our hardware modules and the issues related with the hardware.

Then, we present our AP-lite control algorithm and provide an analysis of our forma-

tion control and obstacle avoidance results in an outdoor setting. The work presented

in this chapter is preliminary and research is ongoing.

8.2 Hardware Considerations

There are numerous issues involved with designing obstacle avoiding robots. One is

to decide the type of hardware components to use, and the other is to decide the

software needed to run the hardware modules.

Deciding the type of hardware to be used is not an easy task due to the availability

of different hardware components. Since the trilateration technology is for localizing

other robots and is not capable of localizing obstacles, we designed a new hardware

module that takes obstacles into consideration. We designed a PIC micro-controller

based hardware module that provides the capability of processing eight sensors. The

main reasons to choose the PIC micro-controller includes its low cost, availability of

support material, and the capability to program its flash memory.

We decided to use four SHARP GP2D12 IR (Infrared) proximity sensors on the

front of a Maxelbot for obstacle avoidance. The decision to choose IR sensors is

mainly based on the availability, cost and our prior experience with these sensors.

Our previous experience in designing, implementing and testing IR sensors on a prior

110

generation of Maxelbots aided us tremendously. Integration of the sensor module to

function with all the other hardware modules on the Maxelbots is another challenging

issue.

One of the most challenging problems of integrating hardware modules is the

communication between the modules that control various robotic functions. Paul M.

Maxim at the UW-DRL contributed tremendously in designing, implementing and

testing algorithms for hardware communication using an I2C data bus.

8.3 Hardware Configuration

We designed one Maxelbot robot that is capable of avoiding obstacles. This particular

Maxelbot consists of two MiniDRAGON boards2 powered by a Freescale 68HCS12

microprocessor and a PIC16F7x7 processor by Microchip Technology Inc. as our

OAM. We use SHARP GP2D12F6X IR sensors as our proximity sensors.

8.3.1 Maxelbot Robots

Our UW-DRL “Maxelbot” (named after the two graduate students who designed

and built the robot) is modular. The platform is an MMP5, made by The Machine

Lab3. There are two MiniDRAGONs on the Maxelbot, one for motor control and

another for trilateration. They communicate via an I2C bus and this allows us to

plug in new peripherals as needed. Figure 8.1 shows the hardware modules of the

Maxelbot robot. The motor control MiniDRAGON consists of algorithms that drives

the motors. It also has the capability of monitoring the proximity sensors. If the

sensor suite is connected to the motor control MiniDRAGON, it allows the control

algorithm to take the proximity sensor readings into consideration. The trilateration

2Produced by Wytec (http://www.evbplus.com/)
3See http://www.themachinelab.com/MMP-5.html

111

module is shown at the right of the diagram. This module controls the RF and

acoustic components of trilateration. Additional modules have been built for digital

compasses, thermometers, and chemical plume tracing (Spears, Hamann, Maxim,

Kunkel, Heil, Zarzhitsky, Spears, and Karlsson 2006).

Figure 8.1: Hardware modules of Maxelbot robot.

8.3.2 Sensor Characteristics

We use four SHARP IR proximity sensors mounted on the front of a Maxelbot for

the obstacle avoidance task. The SHARP GP2D12 IR sensor is a distance measuring

sensor that outputs an analog voltage proportional to the measured distance. Its

effective range is normally 10cm to 80cm. The GP2D12 sensor continuously measures

the distance to an object based on the voltage reading and reports this distance as an

112

analog voltage. The maximum output voltage of this sensor is 2.8 volts. This sensor

uses triangulation to detect the distance4. Due to this triangulation method, the

sensor output is non-linear with respect to the distance being measured. Figure 8.2

shows the typical output of these sensors.

Figure 8.2: GP2D12 sensor output voltage with distance to objects.

4See http://www.acroname.com/robotics/info/articles/sharp/sharp.html

113

float ConvertSensorReadingToInches(rawSensorReading)

float temp;

temp = (6787.0/(rawSensorReading - 3.0)) - 4.0;

return (temp/2.54);

Figure 8.3: Function to convert raw sensor readings to inches.

The GP2D12 IR sensors are provided with 5 volts of input voltage and the analog

to digital (AtoD) converter converts the output voltage to a digital signal based on

the raw sensor reading. These raw sensor readings must be converted to distances

in inches so that these distances can be used in our AP-lite control algorithm. We

make use of a conversion function5 to linearize the digital sensor reading as shown in

Figure 8.3.

8.3.3 Obstacle Avoidance Module

The OAM consists of four GP2D12 IR sensors and the AtoD converter. The analog

output of the sensor is converted to a digital signal, and sent via the I2C data bus to

the motor control MiniDRAGON. We provided sensors with 5 volts of input voltage

and the output is an analog signal. The AtoD module converts the output voltage to

a digital signal that consists of a raw sensor reading between a value of 0 and approx-

imately 550 (the input voltage can be inconsistent), with 0 being the nonexistence of

an object in front of the sensor and 550 being an object closest to the sensor. Once

all sensor readings are available, the OAM stores the sensor reading in an array so

that it can be used by the motor control MiniDRAGON.

The OAM communicates the sensor readings to the motor control module upon

request. From the I2C data bus point of view, this configuration has a master-slave

5See http://www.acroname.com/robotics/info/articles/irlinear/irlinear.html

114

relationship. The OAM is considered to be the slave and the motor control module

that requests the information from the OAM is considered to be the master. This

method of communication is more effective because all the hardware modules require

I2C data bus usage. If this master-slave communication method does not exist, there

is a possibility that one module could hold on to the I2C data bus without letting

other modules use it, causing a total communication failure among modules.

A top view of the Maxelbot robot with IR sensors and the OAM is shown in

Figure 8.4.

Figure 8.4: Top view of a Maxelbot robot with the OAM and MiniDRAGONs for
trilateration and motor control.

8.4 Experimental Results

Numerous task-driven formations have been successfully performed with the Maxel-

bots indoors using trilateration. For details, see (Spears, Hamann, Maxim, Kunkel,

115

Heil, Zarzhitsky, Spears, and Karlsson 2006). One of the drawbacks of trilateration

is that it does not allow obstacle avoidance. The OAM with trilateration allows us

to maintain robot formations and to avoid obstacles.

This section presents three experiments that aid in identifying the quality of the

AP-lite algorithm. Two of our experiments focus on formation control and the other

experiment focuses on AP-lite obstacle avoidance with the OAM. All three experi-

ments are conducted in an outdoor setting.

8.4.1 Control Algorithm: AP-lite

Our control algorithm “AP-lite” follows the physicomimetics approach. The physi-

comimetics framework allows for self-organizing swarms, while AP-lite is only capa-

ble of maintaining a formation. AP-lite is specifically designed as a leader-follower

algorithm; only the leader broadcasts a signal, rather than all robots as in the physi-

comimetics approach. The advantage of AP-lite over physicomimetics is that AP-lite

provides us with faster robot speed, and further, we can use theory to set the param-

eter settings. Since we are at the initial stages of our research we decided to conduct

all of the experiments with one leader and two follower Maxelbots. AP-lite computes

the amount of power required for the left and right motors based on the forces acting

upon the robot. Here, we present our AP-lite algorithm for obstacle avoidance with

both repulsive and attractive forces acting on the robot. We use Hooke’s law as our

force law. Hooke’s law allows us to model robot interactions similar to the force laws

we presented earlier.

The attractive goal force is a global component that is always active; this drives

the robot forward with an equal amount of power to both motors. When the robot

reaches an obstacle, AP-lite computes the repulsive forces acting on the robot, and

change the power supply to the motors. If the robot senses an obstacle from the right

116

void ap lite()

float v, vx, vy, r, F, kmid, kside, Fx, Fy, delta vx, delta vy

float theta, theta new, delta, w, FR, STEP, mass, alpha

int power left, power right

int RANGE = 30 // reactive distance to an obstacle

int MAX SPEED = 70 // maximum power supply to motors

STEP = mass = 1.0 // step size and the mass of the robot

kmid = 5.0 // Hooke’s law constant for two middle sensors

kside = 4.0 // Hooke’s law constant two out side sensors

FR = 0.5 // friction

alpha = 1.0 // decides the amount to turn

Fx = 100.0 // attractive goal force in x direction

Fy = 0.0 // robot do not move side-way

v = current velocity // initial value is at 70%

vx = FR * v // velocity drops with friction

vy = 0 // No side-way velocity

for (all four sensors)

if (sensor reading > 30) // filter out low readings

r = RANGE - ConvertSensorReadingToInches(sensors reading)

if (r < 0) r = 0 // no obstacles seen

theta = virtual sensor angle in radians

if (sensor 1 or sensor 2)

F = kmid * r // compute force from the two middle sensors

else

F = kside * r // compute force from the two out side sensors

Fx = Fx - (F * cos(theta)) // Repulsive x component

Fy = Fy - (F * sin(theta)) // repulsive y component

endif

endfor

(i.e. right-most sensor, S0, (see Figure 8.7) reads a high value), AP-lite reacts to this

repulsion by supplying less power to the left motor. If the robot senses an obstacle

from the left (i.e. right-most sensor, S3, (see Figure 8.7) reads a high value), AP-lite

reacts to this repulsion by supplying less power to the right motor. If both sensors

in the middle, S1 and S2, are reading high values, the repulsive forces from both

sensors counteract the goal force, causing the robot to come to a halt. Our robots

are nonholonomic and they always move in the forward direction.

The Maxelbot’s turn is decided by the turn function (see Figure 8.6). Since our

117

delta vx = STEP * Fx / mass // change in velocity in x direction

delta vy = STEP * Fy / mass // change in velocity in y direction

vx = vx + delta vx // velocity in x direction

vy = vy + delta vy // velocity in y direction

v = sqrt(vx * vx + vy * vy) // current velocity

delta = atan2(delta vy, delta vx) // direction of change in velocity

current velocity = v // reset current velocity

w = turn function(delta) // angle of the robot turn

theta new = atan2(vy, vx) // robot moves in first or second quadrant

if ((-π/2.0 <= theta new) and (theta new <= π/2.0))

power right = (int)(v + v * alpha * w) // power to right motor

power left = (int)(v - v * alpha * w) // power to left motor

// proportionally cap the motor power

if (power right > MAX SPEED or dcl > MAX SPEED)

if (power right >= power left)

power left = MAX SPEED * power left / power right

power right = MAX SPEED

else

power right = MAX SPEED * power right / power left

power left = MAX SPEED

endif

endif

endif

if (dcr >= 0)

move forward right motor with power right

endif

if (dcl >= 0)

move forward left motor with power left

endif

end ap-lite

Figure 8.5: Pseudocode of the AP-lite.

118

float turn function (float angle)

float angle radians = angle

// robot moving to the second quadrant

if ((π/2.0 < angle) and (angle <= π))

angle radians = π - angle

endif // robot moving to the third quadrant

if ((-π < angle) and (angle < -π/2.0))

angle radians = -π - angle // only used in backward move

endif

return angle radians

end turn function

Figure 8.6: Pseudocode of the turn function.

robots currently do not move backward, a robot moving into the second or third

quadrant is not relevant here. The turn function returns the turning angle in radians.

The virtual angles of the positioning of the four IR sensors are shown in Figure

8.7. These sensor angles allow us to effectively model the robot’s stopping behavior

when all sensors detect an obstacle in front of the robot.

Figure 8.7: Positioning of sensors on the front of a Maxelbot.

119

8.4.2 Methodology

For all the experiments, the Maxelbots are run outside in a region in the center of the

University of Wyoming campus called “Prexy’s Pasture” (see Figure 1.3) at6. Prexy’s

consists mostly of grass, of average height 8 cm (3′′), interspersed with concrete

sidewalks, trees, rocks, leaves, and other debris. The grass hits the bottom of the

Maxelbot. Although generally flat, the ground slope can change rapidly (within 61

cm or 2′), by up to 20◦, at boundaries. All the results of the formation tests are

averaged over ten independent runs. All the experiments are conducted with a leader

and two follower Maxelbots. The first two experiments are,

• triangular formation: followers with AP-lite and leader remotely controlled

(RC).

• linear formation: followers with AP-lite and leader remotely controlled (RC).

The last experiment tests the reliability of the OAM working with the AP-lite.

• the OAM effect on AP-lite when the Maxelbot is navigating in an outdoor

terrain with obstacles.

Detailed discussions of the experiments are given in the next two sections.

8.4.3 Formation Control

To test the quality of our AP-lite algorithm, we conducted two experiments. The

focus of the first two experiments is to test AP-lite accuracy with two different robot

formations: triangular and linear. In both of these experiments, the leader is remotely

controlled while the followers control their navigation using the AP-lite algorithm.

6http://www.laramie.willshireltd.com/PrexysPasture.html

120

The third experiment measures the performance of the OAM module working with

the AP-lite. In this experiment, the leader moves in the forward direction and avoid

obstacles; all three Maxelbots use the AP-lite algorithm to navigate. The leader reacts

to both attractive and repulsive forces and the followers only react to the attractive

force of the leader. In all experiments, the followers self-calibrate their initial x and

y position relative to the leader at the beginning of every run. The leader has a

maximum power (speed) of 70% and the followers move with greater than 70% of

power.

In the first experiment, the followers were positioned in a triangular formation

at certain positions as shown in Figure 8.8. The leader is controlled with the RC

and the followers are controlled with the AP-lite but without the OAM. Dark arrows

represent the initial robot headings. The initial positions shown are self-calibrated

by the followers.

Figure 8.8: Three Maxelbots in triangular formation; distances shown are initial x
and y positioning.

Figure 8.9 shows the results of two Maxelbots following the leader in triangular

formation. It is clear that the followers maintain their position consistently using

AP-lite. This also illustrates the accuracy of the trilateration technique. The robot

on the left of the formation oscillates slightly more on its Y-axis more than the robot

121

on the right. We believe this is a hardware issue rather than AP-lite.

-40

-20

 0

 20

 40

 0 50 100 150 200

X
 a

nd
 Y

 P
os

iti
on

s
-

Id
ea

l P
os

iti
on

 in
 S

tr
ai

gh
t L

in
e

Time

X,Y Positions of Two Follwers in Triangular Formation while in Motion

robot-right real Y and ideal Y

robot-left real Y and ideal Y

robot-right and robot-left ideal X

robot-right and robot-left real X

Figure 8.9: Change in position of two follower Maxelbots in triangular formation.

In the second experiment, the followers were positioned in a linear formation at

certain positions as shown in Figure 8.10. Once again, the leader is controlled with

the RC and the followers are controlled with AP-lite.

Figure 8.11 shows the results of two Maxelbots following the leader in linear

formation. The mean error of follower two’s real X position is larger than the mean

error of follower one’s real X position. Our investigation showed that follower two

is the same robot that we used as the left robot in the triangular formation. This

indicates that follower two’s hardware problem is potentially causing this change in

behavior. Also, another possible scenario is the lack of trilateration signal strength

from the leader due to distance.

The bottom two curves of the graph represent the followers real and ideal Y

positions, and these two curves are overlapped in our graph. Both follower maintain

122

Figure 8.10: Three Maxelbots in linear formation; distances shown are initial x and
y positioning.

their Y position extremely well.

8.4.4 Obstacle Avoidance

The third and last experiment tests the quality of our AP-lite algorithm working

together with OAM module. Currently only the leader Maxelbot carries the the

OAM. The resulting figures from Figure 8.12 through 8.14 show the corresponding

relationship between the raw sensor readings and the power to the left and right

motors. For all the graphs, the X-axis represents the time (the number of data

points collected over a period of 15 minutes in an outdoor setting), and the Y -axis

shows the raw sensor reading and the power to the motors. In all three graphs, a

constant value of 200 is added to each of the raw sensor readings. Thus, a raw sensor

value of 0 corresponds to a value of 200. This is done to enhance the visual effect of

the graphs.

Figure 8.12 shows the correlation between the right-most sensor, S0, and the

power to the left motor. The graph shows clear correlation between the repulsion

that occurs from the right side of the robot and the robot turning left. Clearly,

123

-40

-20

 0

 20

 40

 60

 0 50 100 150 200

X
 a

nd
 Y

 P
os

iti
on

s
-

Id
ea

l P
os

iti
on

 in
 S

tr
ai

gh
t L

in
e

Time

X,Y Positions of Two Follwers in Linear Formation while in Motion

Follower 1 real Y and ideal Y

Follower 2 real Y and ideal Y

Follower 1 real and ideal X

Follower 2 ideal and real X

Figure 8.11: Change in position of two follower Maxelbots in linear formation.

visible flat segments of the curve at value 70 represent the robot running forward at

70% of power with no repulsion acting on the robot from any of the sensors. The flat

segments of the bottom curve, closest to value 0, represent the left motor power at

0% causing the wheels on the left side of the robot to be stopped.

Figure 8.13 shows the correlation between the left-most sensor, S3, and the power

to the right motor. Again, the graph shows a clear correlation between the repulsion

that occurs from the left side of the robot and the robot turning right. Again, the

clearly visible flat segments of the curve, at value 70, represent the robot running

forward at 70% of power with no repulsion detected from any of the sensors. The flat

segments of the bottom curve, closest to value 0, represent the right motor power at

0% causing the wheels on the right side of the robot to be stopped.

Figure 8.14 shows the correlation between the two middle sensors S1, S2, and the

power to right and left motors. Again, as a visual enhancement, we show the average

124

Figure 8.12: Correlation between the right-most sensor, S0, and the power to the left
motor.

Figure 8.13: Correlation between the left-most sensor, S3, and the power to the right
motor.

125

of the two middle sensor reading and the average of the power to the two motors.

When both middle sensors detect obstacles, the repulsive forces acting on the

robot are greater than the attractive force pulling it forward. This causes the robot’s

net force to be negative. Since our robot does not move sideways and we deliberately

avoided the backward movement of the robot’s motors, the robot comes to a stop

when there is a negative net force acting on it. Once again, it is clear that AP-lite

reacts well to both attractive and repulsive forces acting on the robot.

Figure 8.14: Correlation between the two middle sensors, S1 and S2, and the power
to the left and right motors.

8.4.5 Further Analysis of Data

Figures 8.15 through 8.17 show the corresponding relationship between the distance

to obstacles and the power to robot motors using scatter plots. We use scatter plots

because they provide a broader picture of the data. For all the graphs, the X-axis

represents the distance to obstacles in inches and the Y -axis represents the power

126

to the motor(s). The distance to the obstacles is measured using the function in

Figure 8.3. Again, all the experiments are conducted in an outdoor setting. If the

robot is less than 30 inches away from an obstacle, the robot feels the repulsive forces

from that obstacle. Beyond 30 inches, obstacles have no effect on the robot. The

closer the robot gets to an obstacle, the higher the repulsive force it feels. When the

robot’s repulsive forces overcome the attractive goal force, the robot comes to a stop.

Figure 8.15 shows the distance to an obstacle on the right of the robot and the

power to the left motor. There are five different scenarios visible in this scatter plot.

First, the robot’s left motor moves at a maximum constant speed of 70 when there

are no obstacles repulsing the robot from the right. Second, the robot’s left motor

power decreases when the robot detects an obstacle from its right at a distance less

then 30 inches. Third, the robot is even closer to the obstacle causing the middle-left

sensor to detect the obstacle and this further decreases the power to the left motor.

Fourth, the robot’s left motor moves at the maximum speed even though the robot is

detecting an obstacle on its right. This is because the robot reacts to a closer obstacle

on the left before it reacts to the obstacle on the right. Fifth, the robot’s left motor

is stopped when there are no obstacles detected on the right. This is because the

robot’s two middle sensors detect an obstacle in front of the robot.

Figure 8.16 shows the distance to an obstacle on the left of the robot and the

power to the right motor. The scenario the robot faces is symmetric to the scenario

seen in the previous (see Figure 8.15) graph. Interestingly, the robot detects less

obstacles on its left compared to its right. This is caused by the difference in obstacle

density along the robot’s path.

Figure 8.17 shows the average (the distances measured by the two middle sensors

are averaged) distance to an obstacle in front of the robot and the average power to

the left and right motors. The scatter plot clearly shows a linear correlation of the

127

Figure 8.15: Correlation between the right-most sensor, S0, and the power to the left
motor.

Figure 8.16: Correlation between the left-most sensor, S3, and the power to the right
motor.

128

motor power to the left and right motors with the distance to an obstacle in front

of the robot. The points where the distance is greater than 30 while the power is

reduced correspond to situations where there are obstacles to the left or right.

Figure 8.17: Correlation between the two middle sensors, S1 and S2, and the power
to the left and right motors.

8.5 Summary

In this chapter, we presented our work of designing and implementing hardware and

software for obstacle avoidance. We introduced our robot platforms, the OAM and a

novel control algorithm, AP-lite, for robot control. AP-lite is reactive to an attractive

force from a virtual goal and repulsive to forces from obstacles. We implemented our

OAM using SHARP IR sensors and a Maxelbot robot. We presented three different

leader-follower experiments. The first two experiments tested the quality of AP-lite

using two followers in two different formations: triangular and linear. The third ex-

129

periment tested the quality of AP-lite using the leader with the OAM. In addition, we

have presented an analysis of our results using scatter plots. Our results demonstrate

the accuracy and quality of both our hardware and software.

Chapter 9

Conclusion

9.1 Accomplishments

Traditionally, accomplishing complex robotics tasks involves an expensive and pos-

sibly remotely controlled robot. This traditional approach overwhelms our robotic

resources with an ever increasing complexity of task requirements and recent world

events. The traditional approaches do not support complete autonomy nor the dis-

tributed computing capability of the robots. The robots depend on the human op-

erations. The performance feedback becomes vital, and delay or perturbation of the

feedback loop due to environmental constraints may jeopardize the task. The lack

of a global observer could be fatal to the mission’s success. Due to these disadvan-

tages in traditional approaches, we focus on designing rapidly deployable, scalable,

adaptive, cost-effective, and robust swarms. Our objective is to develop autonomous

distributed mobile sensing robot swarms. Our objective is to provide a scientific, yet

practical, approach to the design and analysis of swarm robotic systems.

Our specific objective within the context of this thesis is to address the related

issues and concerns of a swarm of robots that reaches a goal while avoiding obsta-

cles and maintaining a cohesive formation, even when the environment changes. We

provide an empirical analysis of obstacle avoiding robot swarms that extensively con-

tributes to our understanding of the general swarm robotic issues.

130

131

We have successfully designed and implemented an obstacle avoiding robot swarm

in simulation as well as using physical robots. All our algorithms are rapidly deploy-

able, scalable, adaptive, cost-effective, and robust. Our robots have limited sensor

input but the aggregate behavior of the collective emerges through the interactions

among swarm members. Our algorithms are distributed and provide computational

efficiency and fault-tolerance.

9.2 Contributions

The work in this thesis makes many contributions to several areas of swarm robotics

research.

• Improved performance in obstacle avoidance:

– applied a new force law for robot control to improve performance. The

thesis presents a novel extension to the physicomimetics framework, with

the use of a generalized Lennard-Jones force law.

– provided novel objective performance metrics for obstacle avoiding swarms.

The metric includes the measurement of the number of robots that collide

with obstacles, their connectivity, the number of robots that reach the

goal, and the time taken by at least 80% of robots to reach the goal.

– improved scalability of the swarm in obstacle avoidance. We provide me-

thodical empirical analysis showing the scalability ranging from 20 to 100

robots, and from 20 to 100 obstacles.

– improved performance of obstacle avoidance with obstructed perception.

We address the important issue of “obstructed perception” in learning

132

behaviors for swarms of robots that must avoid obstacles while reaching a

goal.

• Invented a novel real-time learning algorithm (DAEDALUS):

– demonstrated that a swarm can improve performance by mutating and

exchanging force laws. We invented a novel real-time learning algorithm.

We show how concepts from population genetics can be used with swarms

of agents to provide fast online adaptive learning in changing environments.

– demonstrated the feasibility of DAEDALUS with obstacle avoidance, in

environments three times denser than the norm. The robot’s online en-

vironment is far more difficult than the offline environment due to the

high density of obstacles. We provide an empirical analysis showing the

feasibility of DAEDALUS in this difficult environment.

– explored the trade-offs of mutation on homogeneous and heterogeneous

swarm learning. We extend our real-time learning algorithm to allow

robots to share their rates of mutation, allowing the robots to find the

right balance between exploration and exploitation.

• Hardware implementation:

– presented a novel robot control algorithm that merges physicomimetics

with obstacle avoidance. We introduce an OAM to the Maxelbot robots

and a novel control algorithm (AP-lite) that reacts to an attractive force

from a virtual goal and to repulsive forces from obstacles.

133

9.3 Future Directions

Short Term Future Directions The short term future directions of our work fo-

cus on improving and extending our contributions as well as applying them to provide

practical solutions to complex problems. A significant portion of this thesis is dedi-

cated to exploring the issue related to partial observation. Still, there are significant

issues that arise with respect to“wall following methods” and “local minimum trap”

problems. These issues are not adequately addressed in this thesis. We have observed

“local minimum trap” problem in our work, but we did not make attempts to address

this issue in detail. We intend to introduce a hybrid liquid and gas model combined

with our DAEDALUS approach as a solution. The robots will switch to a gas model

as presented in (Kerr, Spears, Spears, and Thayer 2004) to avoid the “local mini-

mum trap”. Once the robots have escaped they can continue using the previous force

law. The performance metrics we define provide future researchers with meaningful

benchmarks of swarm behavior. A possible extension to these metrics could provide

the distribution of sub-swarms and the number of robots in each sub-swarm.

The results of our heterogeneous swarms are promising, but we believe that robot

behavior can be further improved by different mutation techniques. We intend to ex-

plore other approaches to develop more robust adaptive algorithms for online learning.

We believe that we can accelerate the learning of the mutation rates. For example,

currently, when a robot is in trouble, it receives the rules and mutation rate of a

neighbor that is not in trouble. But this same neighbor could also query the robot in

trouble to find out its mutation rate. Then the neighbor could spread this information

further, to inform other robots that this particular mutation rate might be problem-

atic. Also, another possible avenue for improving the performance of our DAEDALUS

approach lies within reward sharing (i.e. credit assignment) techniques. Current work

134

in classifier systems uses mechanisms such as “bucket-brigade” or “profit sharing” to

allocate rewards to individual “agents” appropriately (Grefenstette 1988). However,

these techniques rely on global blackboards and assume that all agents can potentially

act with all others, through a bidding process. We intend to modify these approaches

so that they are fully distributed, and appropriate for online learning of heterogeneous

swarms. Our experimental setup requires further expansion to study the feasibility

of DAEDALUS in structured environments (i.e. connecting rooms separated with

walls).

The results presented using the Maxelbot robots are preliminary. There are poten-

tially numerous application areas that our algorithms and techniques can be applied.

Currently, we are investigating methods to further improve our algorithms, so that

all the Maxelbots in a formation carry an OAM. This requires improving the AP-

lite algorithm to sense and react to all the neighboring robots in the swarm. This

requires improved communication between robots. To implement DAEDALUS with

physical robots, robots require efficient hardware for communication and data ex-

change. The current trilateration hardware and ad-hoc communication network used

by trilateration are not sufficient for the greater data exchange requirements among

robots.

Long Term Future Directions Recent world events have placed increasing de-

mands on the detection and identification of threats that overwhelm current security

resources. Employing robot teams to investigate for threats and foreign objects in a

predefined area will greatly increase resource effectiveness. Robot teams are expected

to play significant roles in future defense, law enforcement, search and rescue, disaster

management, and homeland security tactical maneuvers, by providing the ability to

acquire and process large amounts of detailed information over large remote areas,

135

enter areas unsafe for humans, and stay on-task where humans may suffer fatigue or

distraction due to peripheral situational factors.

There is a general need to develop the ability of robots to interact with each other,

as well as with humans. This ability is required for commercial applications such as

map generation, obstacle avoidance, surveillance, chemical/biological plume tracing,

chemical/biological source identification, distributed sensing grids, and mine clearing.

UAVs and USVs (Unmanned Surface Vehicles) are expected to play significant roles

in these applications.

Advantages of UAV and USV teams include the absence of imposed centralized

control, autonomous nature of the team members, and the possible ability of achieving

high connectivity between the team members. Adaptability, or easy adjustment to

changing environment stimuli, resilience to failures due to strength in numbers, and

effectiveness in performing multiple tasks further enhances the mission capability and

reduces the human operator intervention. UAV’s and USVs have been investigated

for their potential to support multiple missions, ability for rapid reconfiguration,

deployment endurance, and to serve as an unmanned platform to provide the human

groups an off-board sensor capability that complements existing systems.

We are able to provide behavioral assurance to UAV and USV teams by

• adapting the physicomimetics framework to incorporate performance feedback

for specific tasks and situational awareness.

Based on the physicomimetics framework, autonomous cooperation will be

adapted to UAV’s and USVs designed to simulate entry into an area with a pre-

defined boundary that is suspected to be penetrated by foreign objects and/or

contaminated by biological or chemical hazards. The multi-USV team will ap-

ply our novel robot localization technology to unify control and positioning

136

and data exchange without the need for continuous global knowledge and will

provide necessary performance feedback in conjunction to the environmental

movement.

• extending the physicomimetics framework for sensing and performing tasks in

a marine environment.

The objectives of this research include extending the physicomimetics for a

multi-robot team in a fluidic environment that simulates ocean dynamics. We

intend to modify the physicomimetics framework to include a local data ex-

change to monitor relative positioning with respect to whether a USV is delib-

erately moving or idle and combine this data with the global coordinate system

to map the environmental forces, i.e., fluidic motion of the system, that will

subsequently be used by the physicomimetics algorithms to maintain mission

success with minimum energy. The physicomimetics framework will thus incor-

porate a sequence of active and passive relative position monitoring in conjunc-

tion with the absolute coordinate system to provide environmental force data

to the physicomimetics framework.

• introducing robot/human roles and interactions to the distributed evolution

architecture.

The objective to develop a software architecture using three critical modules:

observer, command and agent. The observer module will dictate the interactions

of the robot team reporting to the human team. The command module will

dictate the interactions of the human team reporting to the robot team including

overriding safety commands that function to terminate a maneuver in varying

degrees. The agent module will dictate the interactions within the multi-robot

team. The DAEDALUS framework will be introduced to these modules to

137

improve the situational awareness of the multi-robot team.

APPENDIX I

Complete Results of Reachability for Offline Learning

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_20

LJ_20_20

Figure 9.1: Change in reachability over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws

138

139

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_40

LJ_20_40

Figure 9.2: Change in reachability over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_60

LJ_20_60

Figure 9.3: Change in reachability over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws

140

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_80

LJ_20_80

Figure 9.4: Change in reachability over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_100

LJ_20_100

Figure 9.5: Change in reachability over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws

141

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_20

LJ_40_20

Figure 9.6: Change in reachability over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_40

LJ_40_40

Figure 9.7: Change in reachability over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws

142

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_60

LJ_40_60

Figure 9.8: Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_80

LJ_40_80

Figure 9.9: Change in reachability over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws

143

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_100

LJ_40_100

Figure 9.10: Change in reachability over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_20

LJ_60_20

Figure 9.11: Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws

144

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_40

LJ_60_40

Figure 9.12: Change in reachability over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_60

LJ_60_60

Figure 9.13: Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws

145

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_80

LJ_60_80

Figure 9.14: Change in reachability over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_100

LJ_60_100

Figure 9.15: Change in reachability over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws

146

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_20

LJ_80_20

Figure 9.16: Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_40

LJ_80_40

Figure 9.17: Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws

147

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_60

LJ_80_60

Figure 9.18: Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_80

LJ_80_80

Figure 9.19: Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws

148

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_100

LJ_80_100

Figure 9.20: Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_20

LJ_100_20

Figure 9.21: Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws

149

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_40

LJ_100_40

Figure 9.22: Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_60

LJ_100_60

Figure 9.23: Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws

150

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_80

LJ_100_80

Figure 9.24: Change in reachability over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_100

LJ_100_100

Figure 9.25: Change in reachability over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws

APPENDIX II

Complete Results of Connectivity for Offline Learning

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_20LJ_20_20

Figure 9.26: Change in connectivity over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws

151

152

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_40LJ_20_40

Figure 9.27: Change in connectivity over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_60LJ_20_60

Figure 9.28: Change in connectivity over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws

153

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_80LJ_20_80

Figure 9.29: Change in connectivity over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 20 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_20_100LJ_20_100

Figure 9.30: Change in connectivity over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws

154

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 40 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_20

LJ_40_20

Figure 9.31: Change in connectivity over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 40 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_40
LJ_40_40

Figure 9.32: Change in connectivity over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws

155

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 40 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_60
LJ_40_60

Figure 9.33: Change in connectivity over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 40 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_80LJ_40_80

Figure 9.34: Change in connectivity over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws

156

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 40 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_40_100LJ_40_100

Figure 9.35: Change in connectivity over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 60 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_20

LJ_60_20

Figure 9.36: Change in connectivity over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws

157

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 60 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_40

LJ_60_40

Figure 9.37: Change in connectivity over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 60 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_60

LJ_60_60

Figure 9.38: Change in connectivity over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws

158

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 60 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_80

LJ_60_80

Figure 9.39: Change in connectivity over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 60 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_60_100

LJ_60_100

Figure 9.40: Change in connectivity over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws

159

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 80 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_20

LJ_80_20

Figure 9.41: Change in connectivity over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 80 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_40

LJ_80_40

Figure 9.42: Change in connectivity over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws

160

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 80 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_60

LJ_80_60

Figure 9.43: Change in connectivity over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 80 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_80

LJ_80_80

Figure 9.44: Change in connectivity over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws

161

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 80 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_80_100

LJ_80_100

Figure 9.45: Change in connectivity over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 100 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_20

LJ_100_20

Figure 9.46: Change in connectivity over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws

162

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 100 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_40

LJ_100_40

Figure 9.47: Change in connectivity over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 100 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_60

LJ_100_60

Figure 9.48: Change in connectivity over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws

163

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 100 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_80

LJ_100_80

Figure 9.49: Change in connectivity over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
on

ne
ct

iv
ity

Time

Connectivity of 100 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety

Newtonian_100_100

LJ_100_100

Figure 9.50: Change in connectivity over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws

APPENDIX III

Complete Results for Newtonian and LJ Force Laws with a Safety Zone

for Offline Learning

Obstacles
robots 20 40 60 80 100

20 96% 3% 1% 0% 0%
40 5% 0% 0% 0% 0%
60 0% 0% 0% 0% 0%
80 0% 0% 0% 0% 0%
100 0% 0% 0% 0% 0%

Table 9.1: Percentage of robots reaching the goal using Newtonian force law

Obstacles
robots 20 40 60 80 100

20 1850 – – – –
40 – – – – –
60 – – – – –
80 – – – – –
100 – – – – –

Table 9.2: Time taken by 80% of robots to reach the goal using Newtonian force law

164

165

Obstacles
robots 20 40 60 80 100

20 100% 100% 73% 60% 63%
40 100% 100% 85% 74% 72%
60 100% 99% 87% 81% 74%
80 100% 99% 90% 86% 79%
100 100% 99% 90% 86% 80%

Table 9.3: Percentage of robots reaching the goal using LJ force law

Obstacles
robots 20 40 60 80 100

20 610 660 – – –
40 680 740 940 – –
60 740 810 970 1300 –
80 780 860 1000 1170 –
100 820 900 1050 1200 1740

Table 9.4: Time taken by 80% of robots to reach the goal using LJ force law

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 20 Obstacles -- With Safety

Newtonian_20_20

LJ_20_20

Figure 9.51: Change in reachability over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone

166

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 40 Obstacles -- With Safety

Newtonian_20_40

LJ_20_40

Figure 9.52: Change in reachability over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone

167

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 60 Obstacles -- With Safety

Newtonian_20_60

LJ_20_60

Figure 9.53: Change in reachability over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 80 Obstacles -- With Safety

Newtonian_20_80

LJ_20_80

Figure 9.54: Change in reachability over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone

168

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 20 Robots Through 100 Obstacles -- With Safety

Newtonian_20_100

LJ_20_100

Figure 9.55: Change in reachability over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 20 Obstacles -- With Safety

Newtonian_40_20

LJ_40_20

Figure 9.56: Change in reachability over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone

169

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 40 Obstacles -- With Safety

Newtonian_40_40

LJ_40_40

Figure 9.57: Change in reachability over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 60 Obstacles -- With Safety

Newtonian_40_60

LJ_40_60

Figure 9.58: Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

170

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 80 Obstacles -- With Safety

Newtonian_40_80

LJ_40_80

Figure 9.59: Change in reachability over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 40 Robots Through 100 Obstacles -- With Safety

Newtonian_40_100

LJ_40_100

Figure 9.60: Change in reachability over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

171

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 20 Obstacles -- With Safety

Newtonian_60_20

LJ_60_20

Figure 9.61: Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 40 Obstacles -- With Safety

Newtonian_60_40

LJ_60_40

Figure 9.62: Change in reachability over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone

172

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 60 Obstacles -- With Safety

Newtonian_60_60

LJ_60_60

Figure 9.63: Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 80 Obstacles -- With Safety

Newtonian_60_80

LJ_60_80

Figure 9.64: Change in reachability over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone

173

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 60 Robots Through 100 Obstacles -- With Safety

Newtonian_60_100

LJ_60_100

Figure 9.65: Change in reachability over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 20 Obstacles -- With Safety

Newtonian_80_20

LJ_80_20

Figure 9.66: Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone

174

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 40 Obstacles -- With Safety

Newtonian_80_40

LJ_80_40

Figure 9.67: Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 60 Obstacles -- With Safety

Newtonian_80_60

LJ_80_60

Figure 9.68: Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

175

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 80 Obstacles -- With Safety

Newtonian_80_80

LJ_80_80

Figure 9.69: Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 80 Robots Through 100 Obstacles -- With Safety

Newtonian_80_100

LJ_80_100

Figure 9.70: Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

176

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 20 Obstacles -- With Safety

Newtonian_100_20

LJ_100_20

Figure 9.71: Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 40 Obstacles -- With Safety

Newtonian_100_40

LJ_100_40

Figure 9.72: Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone

177

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 60 Obstacles -- With Safety

Newtonian_100_60

LJ_100_60

Figure 9.73: Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 80 Obstacles -- With Safety

Newtonian_100_80

LJ_100_80

Figure 9.74: Change in reachability over 2000 time steps for 100 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone

178

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

P
er

ce
nt

ag
e

of
 A

ge
nt

s

Time

Reachability of 100 Robots Through 100 Obstacles -- With Safety

Newtonian_100_100

LJ_100_100

Figure 9.75: Change in reachability over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

BIBLIOGRAPHY

Aoyama, H., K. Ishikawa, J. Seki, M. Okamura, S. Ishimura, and Y. Satsumi
(2007). Development of mine detection robot system. International Journal of
Advanced Robotic Systems 4 (2), 229–236.

Balch, T. and R. Arkin (1998). Behavior-based formation control for multi-robot
teams. IEEE Trans. on Robotics and Autom. 14 (6), 926–939.

Balch, T. and M. Hybinette (2000). Social potentials for scalable multi-robot for-
mations. In IEEE International Conference on Robotics and Automation, pp.
73–80.

Beni, G. and J. Wang (1989). Swarm intelligence. In Proceedings of the Seventh
Annual Meeting of the Robotics Society of Japan, pp. 425–428.

Bonabeau, E., M. Dorigo, and G. Theraulaz (1999). Swarm Intelligence: From Nat-
ural to Artificial Systems. Oxford University Press, Santa Fe Institute Studies
in the Sciences of Complexity.

Borenstein, J. and Y. Koren (1989). Real-time obstacle avoidance for fast mobile
robots. Volume 19, pp. 1179–1187.

Bruemmer, D., D. Dudenhoeffer, M. McKay, and M. Anderson (2002). A robotic
swarm for spill finding and perimeter formation. In Spectrum 2002.

Cepolina, E. and M. Zoppi (2003, September). Cost-effective robots for mine de-
tection in thick vegitation. In Int. Conf. Climbing and Walking robots and the
support technology for mobile machines CLAWAR03, pp. 683–690.

de Croon, G., M. F. van Dartel, and E. O. Posma (2005). Evolutionary learning
outperforms reinforcement learning on non-markovian tasks. In Workshop on
Memory and Learning Mechanisms in Autonomous Robots.

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and con-
struction of test functions. Evolutionary Computation 7, 205–230.

Desai, J., J. Ostrowski, and V. Kumar (1998). Controlling formations of multiple
mobile robots. In IEEE International Conference on Robotics and Automation.

Desai, J., J. Ostrowski, and V. Kumar (2001). Modeling and control of formations
of nonholonomic mobile robots. IEEE Transactions on Robotics and Automa-
tion 17 (6), 905–908.

179

180

Fax, J. and R. Murray (2002). Information flow and cooperative control of vehicle
formations. In IFAC World Congress.

Fox, D., W. Burgard, and S. Thrun (1995). The dynamic window approach to
collision avoidance. Technical Report IAI-TR-95-13.

Fredslund, J. and M. Matarić (2002). A general algorithm for robot formations
using local sensing and minimal communication. IEEE Transactions on Robotics
and Automation 18 (5).

Grefenstette, J. (1988). Credit assignment in rule discovery systems based on ge-
netic algorithms. Volume 3, pp. 225–245.

Grefenstette, J. (1989). A system for learning control strategies with genetic algo-
rithms. In Third International Conference on Genetic Algorithms, pp. 183–190.

Haeck, N. (2002). Minimum distance between a point and a line.
http://www.simdesign.nl/tips/tip001.html.

Hayes, A., A. Martinoli, and R. Goodman (2001). Swarm robotic odor localization.
In IEEE/RSJ International Conference on Intelligent Robots and Systems.

Howard, A., M. Matarić, and G. Sukhatme (2002). Mobile sensor network deploy-
ment using potential fields: A distributed, scalable solution to the area cov-
erage problem. In Sixth Int’l Symposium on Distributed Autonomous Robotics
Systems.

Huber, D. F. and M. Herbert (1999). A new approach to 3-d terrain mapping.
In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Volume 2, pp. 1121–1127.

Kazadi, S. (2005). On the development of a swarm engineering methodology. In
IEEE International Conference on Systems, Man and Cybernetics, Volume 2,
pp. 1423–1428. IEEE Press.

Kerr, W. and D. Spears (2005). Robotic simulation of gases for a surveillance
task. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’05).

Kerr, W., D. Spears, W. Spears, and D. Thayer (2004). Two formal fluids mod-
els for multiagent sweeping and obstacle avoidance. Lecture Notes in Artificial
Intelligence 3228.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int’l Journal of Robotics Research 5 (1), 90–98.

Kim, J. and P. Khosla (1991). Real-time obstacle avoidance using harmonic poten-
tial functions. In IEEE Int’l Conf. on Robotics and Autom., pp. 790–796.

Koren, Y. and J. Borenstein (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In IEEE Int’l Conf. on Robotics and
Autom., pp. 1398–1404.

181

Li, L., A. Martinoli, and Y. Abu-Mostafa (2003). Diversity and specialization in
collborative swarm systems. In Second International Workshop on the Mathe-
matics and Algorithms of Social Insects, Volume 39, pp. 91–98. Elsevier.

Martinson, E. and D. Payton (2005). Lattice formation in mobile autonomous
sensor arrays. In Lecture Notes in Computer Science, Volume 3342, pp. 98–111.
Springer-Verlag.

Menczer, F., M. Degeratu, and W. Street (2000). Efficient and scalable pareto
optimization by evolutionary local selection algorithms. Evolutionary Compu-
tation 8 (2), 223–247.

Murphy, R. R. and J. L. Burke (2005). Up from the rubble: Lessons learned about
hri from search and rescue. In 49th Annual Meetings of the Human Factors and
Ergonomics Society.

Nilsson, N. (1984). Shakey the robot. Technical Note 323. AI Center, SRI Inter-
national 323.

O’Hara, K. J., V. L. Bigio, E. R. Dodson, A. Irani, D. B. Walker, and T. R.
Balch (2005). Physical path planning using the gnats. In IEEE International
Conference on Robotics and Automation.

Reif, J. and H. Wang (1998). Social potential fields: A distributed behavioral
control for autonomous robots. In Workshop on the Algorithmic Foundations of
Robotics.

Sarma, J. and K. de Jong (1998). Selection pressure and performance in spatially
distributedevolutionary algorithms. In IEEE World Congress on Computational
Intelligence, pp. 553–557.

Sbalzarini, I., S. Mller, and P. Koumoutsakos (2000). Multiobjective optimization
using evolutionary algorithms. In Center for Turbulence Research Proceedings
of the Summer Program, pp. 63–74.

Schoenwald, D., J. Feddema, and F. Oppel (2001). Decentralized control of a col-
lective of autonomous robotic vehicles. In American Control Conference, pp.
2087–2092.

Schultz, A. C. (1991). Using a genetic algorithm to learn strategies for collision
avoidance and local navigation. In International Symposium on Unmanned Un-
tethered Submersible Technology, pp. 213–225.

Simmons, R. (1996). The curvaturevelocity method for local obstacle avoidance.
In In Proceedings of the International Conference on Robotics and Automation,
pp. 3375–3382.

Spears, W. (1994). Simple subpopulation schemes. In Proceedings of the Evolution-
ary Programming Conference, pp. 296–307.

182

Spears, W. and D. Gordon (1999). Using artificial physics to control agents. In
IEEE International Conference on Information, Intelligence, and Systems, pp.
281–288.

Spears, W., D. Gordon-Spears, J. Hamann, and R. Heil (2004, August). Dis-
tributed, physics-based control of swarms of vehicles. Autonomous Robots 17,
137–162.

Spears, W., J. Hamann, P. Maxim, T. Kunkel, R. Heil, D. Zarzhitsky, D. Spears,
and C. Karlsson (2006). Where are you? In Second Workshop on Swarm
Robotics. Springer-Verlag.

Spears, W., K. D. Jong, T. Bac̈k, D. Fogel, and H. de Garis (1993). An overview
of evolutionary computation. In European Conference on Machine Learning.

Spears, W., D. Spears, and R. Heil (2004). A formal analysis of potential energy
in a multiagent system. In Proceedings of FAABS III.

Spears, W., D. Spears, R. Heil, W. Kerr, and S. Hettiarachchi (2004). An overview
of physicomimetics. Lecture Notes in Computer Science, State-of-the-Art Se-
ries 3342.

Spears, W., D. Zarzhitsky, S. Hettiarachchi, and W. Kerr (2005). Strategies for
multi-agent surveillance. In IEEE Networking, Sensing and Control, pp. 929–
934. IEEE Press.

Vail, D. and M. Veloso (2003). Multi-robot dynamic role assignment and coordi-
nation through shared potential fields. In Multi-Robot Systems. Kluwer.

Varakantham, P., R. Maheswaran, and M. Tambe (2004). Agent modelling in par-
tially observable domains. In Workshop on Modeling Other Agents from Obser-
vations, AAMAS04.

Watson, R., S. Ficici, and J. Pollack (2002). Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. In Robotics and Autonomous
Systems, Volume 39, pp. 1–18. Elsevier.

Wiegand, R. P., A. M. Potter, D. A. Sofge, and W. M. Spears (2006). A generalized
graph-based method for engineering swarm solutions to multiagent problems.
In Parallel Problem Solving from Nature, pp. 741–750.

Wolf, A., H. B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, and
H. Choset (2003, October). A mobile hyper redundant mechanism for search
and rescue tasks. In Proceedings of the 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Volume 3, pp. 2889 – 2895.

Wu, A., A. Schultz, and A. Agah (1999). Evolving control for distributed micro
air vehicles. In IEEE International Symposium on Computational Intelligence
in Robotics and Automation.

183

Yao, X., Y. Liu, and P. Darwen (1996). How to make best use of evolutionary
learning. In Complex Systems: From Local Interactions to Global Phenomena,
pp. 229–242.

Zarzhitsky, D., D. Spears, and W. Spears (2005). Swarms for chemical plume trac-
ing. In IEEE Swarm Intelligence Symposium (SIS’05). IEEE Press.

Zarzhitsky, D., D. Spears, D. Thayer, and W. Spears (2004). Agent-based chemical
plume tracing using fluid dynamics. In Lecture Notes in Artificial Intelligence,
Volume 3228. Springer-Verlag.

