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Traditional approaches to designing multi-agent systems are offline, in simula-
tion, and assume the presence of a global observer. Artificial Physics (AP) or
physicomimetics (Spears and Gordon 1999) can be used to self-organize swarms
of mobile robots into formations that move towards a goal. Using an offline ap-
proach, we extend the AP framework to moving formations through obstacle fields.
We provide important metrics of performance that allow us to (a) compare the utility
of different generalized force laws in the artificial physics framework, (b) examine
trade-offs between different metrics, and (c) provide a detailed method of comparison
for future researchers in this area.

In the online, real world, a global observer may be absent, performance feedback
may be delayed or perturbed by noise, agents may only interact with their local
neighbors, and only a subset of agents may experience any form of performance feed-
back. Under these constraints, designing multi-agent systems is difficult. We present
a novel approach called “Distributed Agent Evolution with Dynamic Adaptation to
Local Unexpected Scenarios” or DAEDALUS to address these issues, by mimicking
more closely the actual dynamics of populations of agents moving and interacting in
a (task) environment.

This thesis merges DAEDALUS and AP by using obstacle avoidance as a case
study to illustrate the feasibility of DAEDALUS when the environment changes. We
present empirical and practical results that address (a) offline vs. online learning, (b)
obstructed perception, (¢) homogeneous vs. heterogeneous agent cooperation, and

(d) implementation of obstacle avoidance with real robots.
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Chapter 1

Introduction

1.1 Introduction

Accomplishing complex tasks within the field of robotics has traditionally involved ex-
pensive, remotely controlled individual robots. These robots are typically developed,
trained, and tested in highly structured environments with predefined and unchang-
ing conditions. This approach is unsatisfactory for at least two important reasons.
First, as the requirements of missions and tasks increase in complexity the cost of
these types of robots rapidly becomes prohibitive. Second, when these robots are
exposed to novel environments with conditions for which they have not trained, they
tend to meet with catastrophic failures.

One of the earliest ancestors of this type of robot was developed at the Artificial
Intelligence Center at Stanford Research Institute in the late 1960s. This robot,
dubbed Shakey for its wobbly gait (see Figure 1.1), was tested in specially prepared
rooms filled with large painted obstacles. Using a black-and-white on-board camera
as a primary sensor and an off-board computer which analyzed the visual input from
the camera and translated it into first order predicate calculus, Shakey navigated
from room to room attempting to achieve goals it received by teletype. The success
of this robot was due in great part to the carefully engineered environment and

experiments (Nilsson 1984).



Figure 1.1: Shaley the Robot.

Sincethat time, there have beentremendousimprovemers in robotic technol-
ogy leading us to modern exampleslike the remotely cortrolled and astronomically
expensive Predator Unmanned Aerial Vehicle (UAV) seenin Figure 1.2. Deweloped
by General Atomics Aeronautical Systems,the Predator is a speci ¢ purposerobot
usedmainly for surveillanceand reconnaissancenissions. The Predator is capableof
real-time distribution of its surwveillanceimagery drawn from syrthetic aperture radar
and electro-optical and infrared cameras. This data can be sen to front line com-
mand certers or to any worldwide location via satellite communication links. These
capabilities have lead to extensiwe useof the Predator by the United StatesAir Force
(USAF) owing to recen world events (seeFigure 1.2). The succes®f the Predator

dependson the e cient cortrol of its functions by human operatorsin ground con-



trol stations. Hence,the robots missionis subject to human error and other types
of failures at the control stations. The incredible expenseof this device makes the

possibility of sud errors a devastating problem.

Figure 1.2: Predator B-2 UnmannedAerial Vehicle.

In thesetraditional approades,the robot is ertirely dependen upon the human
operator. The performancefeedba& from human to robot is vital and any delay or
perturbation of this feedba& loop could jeopardizethe mission. Without involvemer
of the human obsener, the robots are incapable of performing a task; consequetty,
removing the human global obsener could be fatal to the succes®f the mission. The
lack of autonommy in theserobots is a great causefor worry.

Existing di culties with traditional approadesto solving problemsusing robots
encourageus to focuson designingrapidly deployable, cost-e ective, scalable,adap-
tive, and robust swarms of robots. We prefer autonomous,distributed, mobile, sens-
ing robots in our swarms. Our objective is to provide a scierni c, yet fully practical,

approad to the designand analysisof swarm robotic systems.



1.2 Swarm Rob otics

Swarm robotics refersto an approad that makes use of a large number of physical
robots to solve complex problems. One of the important aspects of this approad is
that a solution to a problememergeghrough the local interactions of the robots in the
swarm and the interaction of theserobots with an ervironment. A large collection of
inexpensiwe and highly capablerobotsimprovesthe availability of resourcedor solving
complexproblems. The swarm robotics approad is an improvemert over traditional
robotic approades, providing us with e ectivenessand robustness. Robot swarms
are highly e ective, becausahey can perform tasksthat oneexpensiwe robot cannot.
They are robust in the sensethat if somerobots fail, the swarm can still achieve the

task. Robot swarms provide the following advantages:

computational e ciency: the availability of multiple processorsin a swarm
reduceshe computational overheadof onelarge processoiin an expensiwe single
robot. We can exploit the concurrencyof computation with multiple processors

in a swarm.

reliability: swarms are more reliable due to their multiplicit y. Recovery from
componert failuresis extremely important for missioncritical tasks. A swarm
of robots allows us to accomplishthe mission even when componerts of some

robots fail.

extensibility: sincea swarm consistsof multiple robots, we canalter the number
of robots in the swarm and their capabilities. This extensibility allows us to
possiblyaccomplishseweral di erent tasksin a singlemissionthat a singlerobot
could not provide. It also permits us to increasethe size of the swarm giving

the ability to explorea larger area.



responsiveness:individual robots in a swarm can act as separatehardware or
software modules;this modularity allows us to isolate and handle anomalieslo-
cally. The responsivenessof individual robots minimizesthe e ect of anomalies

propagatinginto other areasof the swarm.

maintainability: maintaining a swarm is also easydue to system modularity.
Individual robots can be removed from a swarm or reintroduced to a swarm

without jeopardizingthe e ectivenessof the task being accomplished.

Figure 1.3 shavs a sequenceof snapshotsof four Maxelbot robots deweloped by the
University of Wyoming Distributed Robotics Laboratory (UW-DRL), moving in an
outdoor terrain while maintaining a diamond formation. Thesefour robots maintain
their formation asa swarm usinga novel physics-basedalgorithm called AP-lite which

we will discussin Chapter 8.

1.3 Our Objectiv es

In our researt, we focus on seeral generalobjectivesthat may allow us to address

someof the swarm robotic issuesand concerns.There are four generalobjectives:

syrthesize distributed multi-rob ot systemsthat cortain tens to thousands of

robots interacting locally.

achieve the desiredmacroscopic/globalbehavior through microscopic/local in-

teractions.
be as understandableand predictable as possible.

adhieve desiredbehavior with minimum sensorinformation.



Figure 1.3: Four Maxelbots maintain a diamond formation in outdoor terrain.



Our speci ¢ objective within the context of this thesisis to addressthe related
issuesand concernsof a swarm of robots that reathesa goal while avoiding obstacles
and maintaining a cohesie formation, even if the environmert changes. Our focus
is to provide an analysisof our speci ¢ objective that extensiwely cortributes to the

understandingof generalswarm robotics issues.

1.4 Swarm Tasks

Swarm robotic approades have becomepopular for solving complex tasks due to
the robustnessprovided by multiple robots. Swarm robotic researbers have been
trying to solve complex problemsrelated to many di erent tasks. Though someof
thesetasks may appearto be trivial to a human, automation of the solution process
using robots is a di cult and complex problem. We addressse\eral tasks that are

important to swarm robotics researb.

1.4.1 Search and Rescue

Imagine an earthquake in a large apartmernt complex? There is massie destruction
of property; many people are trapped in the rubble without any help. The rst

responders lack resourcesto provide for the needy and begin a seartn and rescue
mission. The authorities decideto releasea swarm of robots with di erent capabilities
to provide much neededhelp. Someof the robots seard for survivors, while some
others clear rubble. Another group of robots starts moving injured and sidk humans
to a certral location while a third group of robots beginstreating the injured. This
soundssimilar to a pagefrom sciencection but the recen advancemets in swarm
robotics researb appear to be solving searti and rescuemissionsusing swarms of

robots.



The work by the Center for Robot Assisted Seartr and Rescue(CRASAR) at
the University of South Florida has cortributed to the advancemen of searth and
rescuerobots (Murphy and Burke 2005). Se\eral prototypes of robots deweloped at
CRASAR are already being usedby re departmens and bomb squads.

Wolf and Chosetat the CarnegieMellon University Robotics Institute have dewel-
oped robot prototypesthat are capableof maneuwering through narrow crawl spaces
(Wolf, Brown, Casciola, Costa, Sthwerin, Shamas,and Choset 2003). These\Ser-
pertine" manipulators are rich with sensorsand are motivated by the behavior of
snalesand worms. It usesa vision systemto sear® con ned ervironmerts. One of

the major disadvantagesof the \Serpertine" is its lack of completeautonomy.

1.4.2 Surveillance

Obsenation of humans or objects from a distance using electronic equipmen has
becomea popular method for gathering information. One of the approatesto ac-
complishingthis surweillancetask is to usemultiple robots asa swarm. Swarm robotic
approades are recognizedas promising surveillance techniques. Someexamplesof
usesof robotic swarms in surwveillance include identifying eneny targets, detecting
unfriendly hazardouseerts, and cortrolling air trac. Someof the signi cant work
in surweillanceis done at the UW-DRL by Kerr et al. and Spearset al. Kerr et al.
introducedthe kinetic theory approad to accomplishingthe surweillancetask (Kerr
and Spears 2005) while Spearset al. analyzedrule-basedapproadesto the cover-
age/surweillance tasks using multiple UAVs (Spears, Zarzhitsky, Hettiarachchi, and

Kerr 2005).



1.4.3 Chemical Plume Tracing (CPT)

Another task that researbers have been studying is the application of a swarm of
robots toward chemical or biological plume sourcetracing. The task is to rapidly

localizethe emitter usingmultiple robots. Work at UW-DRL hasproducedpromising
resultsin this area (Zarzhitsky, Spears, Thayer, and Spears2004). This work uses
computational uid dynamictechniquesto localizethe emitter. Prior approathesuse
either chemotaxisin which robots follow the local gradiert of the plume concetration

or anemotaxisin which robots are guided upstreamby the velocity of the plume. The
uxotaxis approad introducedby Zarzhitsky has produced superior results than the

previoustwo approades.

1.4.4 Terrain Mapping

Building a map of an unknown terrain is another task that can be accomplished
with a swarm of robots. A swarm of robots with a sensorsuite can be deployed to
create a map of an unknown area. The major advantage of this approad is that
robots can simultaneously develop maps of non-overlapping regionsmaking this task
lesstime consumingthan trying to accomplishthe samewith a singlerobot. Huber
et al. at the CarnegieMellon University introduceda new approad to 3-D terrain
mapping using terrestrial range sensors (Huber and Herbert 1999). Combining this
sensortechnology with other robotic platforms allows usto achieve a swarm of terrain

mapping robots.

1.45 Land Mine Detection

The objectiveis to usea collectionof cooperative robots that aredispersedin aterrain

to locate land mines. Mine detection is a very sensitive and possibly expensiwe task.
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Traditional practice is to usehuman subjects (with or without heavy macinery) to
detect and destroy minesin a mine eld. This approad is extremely risky and time
consuming. It is practical to useinexpensive autonomousrobots to accomplishthis
task. Cooperative robot swarms are even more e ective, sincethey can explore the
mine elds in for lesstime.

An advancedrobot systemfor mine detection deweloped by Fuji Heavy industries
Co. Ltd isastepin the right direction (Aoyama, Ishikawa, Seki, Okamura, Ishimura,
and Satsumi 2007). Their robot consistsof four crawlers and two work arms and is
capableof operating in rough terrain. Se\eral disadwantagesof this robot are limited
deployability, massiwe size,lack of autonomy, and di cult y of transporting to remote
locations. Thesedisadwantagesrestrict this robot from being deployed in a swarm.

Cepolina and Zoppi argue the importance of deweloping cost e ective mine local-
izing robots and introduce four conceptcrawlers for this task (Cepolina and Zoppi
2003). They investigatetwo methods: (1)transporting a sensorsuite to a mine eld
by carrying it on a suitable platform similar to Aoyama'swork, (2)bringing air sam-
plesfrom a mine eld to aremotesafelocation. This secondmethod is calledRemote

Explosive Scen Tracing (REST).

1.4.6 Task Environmen ts

There are various types of task ervironmerts for testing di erent tasks. Our focus
is to usewidely acceptedtask environmens that are lesscomplexto simulate. The
majority of the environments that have beenstudied are highly structured and specif-
ically suited to test a singletask. It is dicult to identify and designa generictask
ervironmert to suit all of the tasksthat we discussedabove.

Researbers have commonly usedvarioustypesof simulated ervironmerts to test

their robot swarms. Howeer, the useof simulations to model robots is often criticized
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due to their inability to model complexreal-world scenarios.We beliewe that, even
with the limitations of simulated ervironmerns, thesemodels are still of great value
in exploring robot behaviors. Simulations can certainly be usedas basicinvestigative
toolsin the study of a complexswarms of robots. Thus, we usesimulations asa rst
step towards the implemerntation of a working system.

Figure 1.4 shows a simulation of a simple structured ervironment wherea swarm
of robots cooperate to accomplisha task. Figure 1.5 shows a highly structured lab
environmernt wherea swarm of four robots cooperateto accomplisha task (Courtesy
of the Certer of Engineering Scienceand Advance Researbh, Oak Ridge National

Laboratory)

1.5 Obstacle Av oidance

For all the tasksin the previous sections,avoiding obstaclesin the task environment
is extremely important. The phraseobstacleavoidancerefersto combining software
and hardware methodologiesthat intelligently drive robots from onepoint to another
without colliding with other objects in the environmert. Our focus is to design,
dewelop, and implement a swarm of robots that is capable of autonomousnaviga-
tion towards a goal in an obstacle-laderenvironment while maintaining a hexagonal
lattice formation. If the robots have limited sensorinformation and/or the erviron-
mert changeswhile the robots arein the eld, successfullyaccomplishingthe obstacle
avoidancetask becomesmuch more di cult. We accomplishformation cortrol, ob-
stacle avoidance,and reacting a goal using techniquesinspired by physical systems.
We are motivated by physicsbecauseaggregatebehaviors seenin classicalphysicsare
potertially reproducible with collectionsof mobile robots. We useour understanding

of classicalphysicsto derive the collective beharviors for robots. We do not restrict
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Figure 1.4: Group of robots in a simulated ervironmert.

Figure 1.5: Group of robots in a highly structured lab environmert - Oak Ridge
National Laboratory.
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ourseles to copying physics precisely so modi cations are possible. Our obstacle
avoidance approad is rapidly deployable, distributed, scalable,adaptive and cost

e ective.

1.6 Contributions

The work in this thesismakesmany cortributions to se\eral areasof swarm robotics

researa.

Improved performancein obstacleavoidance:

{ applied new force law for robot cortrol, to improve performance.
{ provided novel objective performancemetrics for obstacleavoiding swarms.
{ improved scalability of the swarm in obstacleavoidance.

{ improved performanceof obstacleavoidancewith obstructed perception.
Inverted a real-time learning algorithm (DAEDALUS):
{ demonstratedthat a swarm can improve performanceby mutating and

excanging force laws.

{ demonstratedfeasibility of DAEDALUS with obstacleavoidance,in ervi-

ronmerts three times denserthan the norm.

{ explored the trade-o s of mutation on homogeneousand heterogeneous

swarm learning.
implemerted hardware:

{ presented a novel robot cortrol algorithm that mergesphysicomimetics

with obstacleavoidance.
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1.7 Preview

In this thesis, we focus on se\ral issuesrelevant to a swarm of robots moving in
formation while avoiding obstaclesand readiing a goal. Though we are not restricted
to a singletask ervironmert, we usea simulation world modeled with generally ac-
cepted standardsand presem an empirical analysisof our results. We implemert a
novel physics-basedcortrol algorithm for robot cortrol and obstacle avoidanceand
presemn our results with physical robots in an outdoor setting.

In this chapter, we have presented seeral tasks where obstacle avoidance and
swarm formations are important. In Chapter 2, we explore currert trends and alter-
native approadesto solving swarm formation cortrol and obstacle avoidance. We
dewte Chapter 3 to preseting two physics-basedorce law algorithms. Chapter 4
explainsour parameter optimization method for force laws, and our simulation tool.
Chapter 5 provides an empirical analysis of \o ine learning" using se\eral perfor-
mance measuremen metrics. In Chapters 6 and 7, we presem our novel adaptive
learning algorithm called \D AEDALUS" and explore the e ect of mutation in the
\online learning" of distributed swarm robotics using heterogeneousobots. Chap-
ter 8 preseits our robot cortrol algorithm (AP-lite), the obstacleavoidance module
(OAM), and the results shoving the accuracy of AP-lite and OAM using physical

robots.



Chapter 2

Related Work

2.1 Intro duction

Swarm robotic approates have becomepopular for solving complex tasks due to
robust capabilities provided by multiple robots. We refer to designing,implemening
and testing a swarm of cooperating ageris commensurateto somecriterion designed
to producea global outcomeof a complextask as\swarm engineering"(Kazadi 2005).
Swarm engineeringapproadeshave beenstudied and presetned in numerousreseart
articles. This chapter preseits someof the approadies adopted by researbers for
swarm formation cortrol and obstacleavoidance.

First, we presen di erent approatesto swarm formation cortrol sud asbehavior-
basel, rule-baseal, potential elds (PF), control-theoretic, and physi@mimetics. These
approateshave beenapplied to di erent swarm tasks. Next, we presemn more rele-
vant work in the obstacleavoidancearea. Finally, we explain di erent sensometwork

approatesfor swarm engineering.

2.2 Behavior-based and Rule-based Swarm Rob otics

Behavior-based swarm intelligence techniques are ethologically motivated and have

had excelletn successith foraging, task allocation, and division of labor problems.

15
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Beni et al. introducedthe conceptof swarm intelligence while studying cellular
robotic systemsin 1989 (Beni and Wang 1989). They investigated the properties
of simulated self-organizingagens in cellular robotic systems. Bonabeau et al. ex-
tended this work providing a rigorous look at the medanismsunderlying collective
behavior in sccial insects(Bonabeau, Dorigo, and Theraulaz 1999). This work, titled
\Swarm Intelligence: From Natural to Arti cial Systems"includesattempts to design
distributed cooperative problem-solvingalgorithms inspired by the collective behav-
ior of insect colonies. They presen experimertal results of sewral studies related
to foraging, division of labor, clustering and sorting, nest building, and cooperative
transportation tasks. Hayes et at. described a biologically motivated distributed
algorithm called \Spiral Surge" by which a group of collaborating ageris can solwe
the full odor localization task more e cien tly than a singleagen (Hayes, Martinoli,
and Goodman 2001). They demonstratedthat a group of real robots under fully
distributed cortrol can successfullytraversea real odor plume which is a sub-task of
odor localization.

Both behavior-basedand rule-basedsystemshave proved quite successfuin ex-
hibiting a variety of behaviors in a heuristic manner. Fredslund and Matari ¢ studied
the problem of achieving global behavior in a group of distributed robots using only
local sensingand minimal communication, in the corntext of formations (Fredslund
and Mataric 2002). The key conceptof their algorithm is that eat robot follows a
designated\friend" robot at the appropriate angle and distance using a proximity
sensorthat can provide the angle and distance information of the friend. By pan-
ning the sensorappropriately, the algorithm simply keepsthe friend certered in the
sensor'sview. They presetted their resultsusingfour and eight robotsin di erent for-
mations. Balch and Arkin accomplishedobot formations usingthe following two step

process: \detect-formation-position” which is a perceptual processthat determines
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the robot's position in the formation basedon the current ervironment data, and
\maintain-formation" which generatesmotor commandsto direct the robot towards

the correct location (Balch and Arkin 1998).

2.3 Potential Fields

One of the earliest physics-basedtechniques is the potential elds approad (e.g.,
(Khatib 1986)). Most of the PF literature dealswith a small number of robots (typ-
ically just one)that navigate through a eld of obstaclesto getto a target location.
The ernvironmert, rather than the robots, exert forces. Obstaclesexert repulsive
forceswhile goalsexert attractiv e forces(Kim and Khosla 1991; Koren and Boren-
stein 1991).

Recently, Howard et al. and Valil et al. extendedPF to include inter-ager repul-
sive forces{ for the purposeof achieving coverage(Howard, Mataric, and Sukhatme
2002; Vail and Veloso2003). Although this work was deweloped independerily of
physicomimetics framework, it arms the feasibility of a physics force-basedap-
proach. Another physics-basednethod is the \Engineered Collective" work by Dun-
can at the University of New Mexico and Robinett at the Sandia National Lab-
oratory. Their technique has been applied to seart-and-rescueand other related
tasks (Schoenwald, Feddema,and Oppel 2001).

The scial potential elds (SPF) framework is highly related to physicomimetics
framework (Reif and Wang 1998). Reif and Wang rely on a force-lav simulation that
is similar to the physicomimeticsapproad, allowing di erent forcesbetweendi erent
robots. Their emphasisis on syrthesizing desired formations by designinggraphs
that have a unique potential energy (PE) enbedding. Bruemmer et al. also utilize

the SPF approad as a meansto coordinate group behavior and promote the emer-
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genceof swarm intelligenceas seenin a colory of ants or swarm of bees(Bruemmer,

Dudenhce er, McKay, and Anderson2002).

2.4 Control Theoretic Swarm Rob otics

Control-theoretic approadhieshave alsobeenapplied e ectively (e.g., (Fax and Mur-
ray 2002)). Our approad doesnot make the assumptionof having leadersand follow-
ers,asin (Desai, Ostrowski, and Kumar 1998;Desai, Ostrowski, and Kumar 2001).

Fax and Murray consideredthe problem of cooperation among a collection of
vehiclesperforming a sharedtask using inter-vehicle communication to coordinate
their actions. They applied tools from graph theory to relate the topology of the
comnunication network to formation stability, and provided a mathematical analysis
to determinethe e ect of the graph on formation stability.

Desai et al. proposeda method that usesonly local sensor-basednformation
for leader-follaver formation cortrol. Their method usesnonlinear cortrol theory to
achieve formations. They conductedexperimerts with seeral follower robots navi-
gating around an obstaclewith oneor two leaders. They presened their results with

oneor more leadersand with one or two follower(s) moving around a single obstacle.

2.5 Physicomimetics Approac hes

\Ph ysicomimetics"or arti cial physics(AP) is anotherswarm robotic approad moti-
vated by classicalphysics. This approad providesexcellen techniquesfor distributed
cortrol of large collectionsof mobile physical agens aswell astheoretical foundations
for analyzing swarm behaviors. The physicomimeticsframework provides an e ec-
tive basisfor self-organization fault-tolerance and self-repair(Spears,Gordon-Spears,

Hamann, and Heil 2004). Our work is an extensionof the physicomimeticsframe-
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work provided by Spearset al. A thorough discussionof this framework is provided
in Chapter 3.

Wiegand et al. generalizedphysicomimeticsto extend the power of multi-agent
systemsby specializing particles and their interactions, and they shaved the e ec-
tivenessof this generalizedrepresetation by ewlving a solution to a challenging
multi-agent resourceprotection problem (Wiegand, Potter, Sofge,and Spears2006).

Kerr et al. presered two dierent algorithms based on the physicomimetics
framework, adieving maximal coverage throughout an unexplored corridor (Kerr
and Spears2005). The rst algorithm is an extensionof the physicomimetics,which
employs virtual repulsive forcesfor multi-agent coordination. The secondalgorithm
is basedon the Kinetic theory of gaseswhich modelsinter-particle and particle-wall
collisions.

Using the physicomimetics approat Zarzhitsky et al. explored the CPT task
with obstacle avoidance (Zarzhitsky, Spears, and Spears 2005). In the algorithms
presened, robots share o w- eld variableswith their neighbors and usethe valuesto
calculate the next way-points basedon the robots' own local coordinate axes. These
valuesdecidethe robot's next move which translatesinto a virtual force. They im-
plemerted obstacleavoidanceusingthe CPT algorithm in a hierarchical architecture,
in which robots usually navigate around obstaclesbeforecollision avoidancebecomes

necessary

2.6 Obstacle Avoidance

In the specic cortext of obstacle avoidance, the most relevant papers are (Balch
and Arkin 1998;Balch and Hybinette 2000;Fredslund and Mataric 2002). Balch and

Arkin examinethe behavior of four robots moving in formation through an obstacle
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eld with 2% coverage. Balch et al. extend this to an obstacle eld of 5% coverage,
and also investigate the behavior of 32 robots moving around one medium size ob-
stacle (Balch and Hybinette 2000). Fredslund and Mataric examinea maximum of
eight robots moving around two wall obstacles(Fredslundand Mataric 2002). To the
best of our knowledge,we are the rst to systematically examinelarger numbers of
robots and obstaclesusing swarm robotics approadies.

Sdwultz preseried a projective planning algorithm for real-time autonomousun-
derwater navigation through obstaclegSdwltz 1991). He use\SAMUEL" , a learning
systembasedon geneticalgorithms to learn high-performancereactive strategiesfor
navigation and collision avoidance. He preserted results in simulation with a single
autonomousunderwater vehicleand shoved that SAMUEL canadieve a successate
of 96% on randomly generatedmine elds over a human-designedstrategy that has
an averagesuccessate of only 8%.

Simmonspresens a new method for local obstacle avoidance by indoor mobile
robots that formulates the problem as one of constrained optimization in velocity
space(Simmons 1996). The robot choosesvelocity commandsthat satisfy all the
constrairts sud asthe physical limitations of the robot and the ervironmental lim-
itations, and maximize an objective function that trades o speed, safely and goal-
directedness. He demonstratesthe utilit y of this algorithm using a single physical
robot in a cortrolled laboratory ervironmert.

Another relevant work in obstacleavoidanceis dynamic window approat (DWA).
This approad is mostly suited for robots moving at a high speed and is derived
directly from the robot's motion dynamics (Fox, Burgard, and Thrun 1995). In the
DWA, the seart for commandsthat cortrol the robot is carried out in spaceof
velocities. The robot only considersthe velocities that are safewith respect to the

obstacles. They presen their results with tests done using an autonomous robot
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called\RHINO" which usesproximity sensorgo computethe dynamic window.

Borenstein et al. presem an approad that permits the detection of unknown
obstaclessimultaneously with the steeringof the mobile robot to avoid collisionsand
advancetoward the target (Borenstein and Koren 1989). They usea \virtual force
eld" method that usespotential elds for navigation and certainty grids for obstacle
represemation. They shawved that this method is especially suitable for noisy and
inaccurate sensorinputs. They also addressedthe \lo cal minimum trap" problem
whererobots get stuck in a U-shaped obstacle. We addressthis issuein Chapters 6
and 7.

O'Hara usesan enmbedded network distributed throughout the ervironment to
approximate the path-planning spaceand usesthe network to computea navigational
path using a framework called \GNA Ts" when the environmen changes(O'Hara,
Bigio, Dodson, Irani, Walker, and Balch 2005). The dynamism of the environmert is
modeledwith an opening and closingdoor in the experimertal setup. Howewer, the

embeddednetwork is immobile, whereasour network is completely mobile.

2.7 Summary

We have discussedse\eral di erent approadiesto both robot swarm formation con-
trol and robot obstacleavoidance. Eadc of theseapproadheshasits advantagesand
limitations.

Behavior-basedand rule-basedtechniquesdo not make use of potertial elds or
forces. Instead, they deal directly with velocity vectors and heuristics for changing
thosevectors(although the term \p otertial eld" is often usedin the behavior-based
literature, it refersto a eld that di ers from the strict Newtonian physicsde nition).

Also, they either assumethe existenceof a global cortroller or they are basedon
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heuristics. Approachesthat assumethe presenceof a global cortroller fail to adapt
well to unknown ernvironmerts.

The physicomimeticsapproadesfocuson potential energyand forcebalanceequa-
tions. Physicomimeticsis capable of creating uid-lik e formations as well as solid
formations. Thesedi erent formations can be createdby simply modifying force law
parameters.In addition, physicomimeticsis capableof providing behavioral assurance
to agers that adapt in dynamic ervironmens. Physicomimeticsis fully distributed
and does not assumethe presenceof a global cortroller, and is computationally ef-
cient due to the lack of computation of potertial elds (Spears, Gordon-Spgears,
Hamann, and Heil 2004). Our work is a novel extensionto physicomimeticsthat pro-
vides superior results in the area of heterogeneousnd homogeneouswarm cortrol

using the obstacleavoidancetask.



Chapter 3

Physicomimetics

3.1 Intro duction

This chapter providesan overview of the framework for distributed cortrol of robotsin
a swarm, called\physicomimetics" or \arti cial physics" (Spearsand Gordon 1999).
Spearsand Gordon usethe term \arti cial® (or virtual) becausealthough this frame-
work is motivated by natural physical forces,it is not restricted to them. Although
the forcesexerted upon a robot by other robots and that environmert are virtual,

robots act as if they are real. Thus the robot's sensorsmust sensefar enoughto
allow it to computethe forceto which it is reacting. The robot's e ectors must allow
it to respond to these perceived forces. Spears'sexplain their motivation for this

framework in (Spears, Gordon-Sgears,Hamann, and Heil 2004):

At rst blush, creating hexagonsappearsto be somewhatcomplicated,
requiring sensorsthat can calculate distance, the number of neigtbors,
their angles,etc. Howewer, only distance and bearing information is re-
quired. To understandthis, recall an old high-sdool geometrylessonin
which six circles of radius R can be drawn on the perimeter of a certral
circle of radius R. Figure 3.1 illustrates this construction. If the particles

(shown as small circular spots) are deposited at the intersectionsof the
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circlesthey form a hexagonwith a particle in the middle.

Figure 3.1: How circlescan create hexagons.

There are two potential advantagesto this approad. First, in the real physi-
cal world, collectionsof small ertities yield surprisingly complex behavior from very
simple interactions betweenthe ertities. Thus, there is an acceptedprecedencehat
complexcortrol can emergethrough simple local interactions. Second,sincethe ap-
proach is largely independen of the sizeand number of robots, the results scalewell

to larger robots and larger setsof robots.

3.2 Physicomimetics Approac h

In the physicomimeticsframework, virtual physicsforcesdrive a swarm robotics sys-
tem to a desiredcon guration or state. The desiredcon guration is one that mini-
mizesoverall systempotential energy and the systemacts as a molecular dynamics
(F = ma) simulation.

Eadh robot has position p and velocity ¥. We usea discrete-time approximation

to the continuous behavior of the robots, with time-step t. At ead time step, the
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position of ead robot undergaesa perturbation p. The perturbation dependson
the currert velocity, i.e., p= v t. The velocity of ead robot at ead time stepalso
changesby w. The changein velocity is cortrolled by the force on the robot, i.e.,

¥ = F t=m, wherem is the massof that robot and F is the force on that robot.
F and v denote the magnitude of vectors F and ». A frictional force is included
for self-stabilization and modeled by decreasingthe robot's velocity by a constart
multiplicativ e factor. Figure 3.2 shaws the perturbation of the robots R and R4 due

to forcesexerted upon them by other robots and the environmert.

Figure 3.2: Robots R and R4 undergoa perturbation to their positionsdue to forces
from other robots and the ervironmert. Robot R, doesnot senseforcesfrom robots
R through Rz due to sensorproximity.

Our objective is to have the physicomimeticsframework map easily to physical
hardware, and Spears's physicomimetics framework re ects this design philosoply.
Having a massm assaiated with ead robot allows our simulated robots to have
momertum. Robots need not have the samemass. The frictional force allows us
to model actual friction, whether it is unavoidable or deliberate, in the real robotic

system. With full friction, the robots cometo a completestop betweensensoreadings
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and with no friction the robots cortinue to move as they sense. The time step t
re ects the amourt of time the robots needto perform their sensorreadings. If t
is small, the robots get readingsvery often whereasif the time stepis large, readings
are obtainedinfrequertly. We have alsoincluded a parameterF ., Which providesa
necessaryestriction on the accelerationa robot can adcieve. Also, a parameterVpax
restricts the maximum velocity of the robots (and can always be scaledappropriately

with t to ensuresmooth path trajectories).

3.3 Newtonian Force Law

The Newtonian Force Law (Newtonian) hasbeenusedin prior work (Spears,Spears,
Heil, Kerr, and Hettiarachchi 2004)and is a generalizationof the \Newtonian" grav-

itational forcelaw which includesboth attraction and repulsion. The force law is:

Fi;j = (31)

F  Fmax is the magnitude of the force betweentwo robotsi andj, andr is the
distancebetweenthe two robots. The massef the robots are denotedasm; and m;,
and are assumedto be setto 1.0 in this thesis. The variable G a ects the strength
of the force. The variable p is a user-de ned power that cortrols the reduction in
strength with distance. The force is repulsive if r < R, attractive if r > R, and
is zero beyond a certain range (e.g., 1:5R), to enforcethe local nature of the force
law. R is the desiredseparationbetweena robot and neighboring robots. In orderto
achieve optimal behavior, the valuesof G, p, and F,ox must be determinedaswell as
the amourt of friction. The Newtonian force law generally createsrigid formations

that act assolids,even in the presenceof sensorand locomotion uncertainty.
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3.4 Lennard-Jones (LJ) Force Law

In this thesiswe also investigate the utilit y of a secondforce law, which is a gener-
alization of the Lennard-Jones(LJ) force law. The LJ poterntial function was rst
proposedby John Lennard-Jonesn 1929. This potential function modelstwo distinct
forcesbetweenneutral moleculesand atoms. The forcesare basedon the distances
betweenthe molecules;at long rangesthe attractiv e force makesthe moleculesmove
closerand at short rangesthe repulsive force makesthe moleculesmove apart, causing
the moleculesto maintain a natural balance. The LJ potertial function can be given
by the expression:

12 6

LIP, =4 — — 2
JP - - (3.2)

As shawn in Figure 3.3,wheneer = land = r, the interaction energybetween
two moleculesis at zero, which is the molecule'sequilibrium. When the separation
distancer > 1, interaction energyquickly decrease$o -1 andthen increasesand even-
tually readeszerodue to longer range, causingnon-interaction between molecules.
When r < 1, the interaction energy betweentwo moleculesis very high, reading
1 . Due to the behavior shovn by the LJ potertial function, this becomesan ideal
function to model interactions betweenrobots and their environmernts.

To model interactions of robots in a swarm, we needto transform the LJ potential
function to a force function. Sincethe force betweentwo moleculesis the negated

derivative of the potential,

d(LIP,)

i dr ;

(3.3)

the force betweenrobots i, j could be derived as:
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Interaction Energy of Lennard-Jones Potential
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Figure 3.3: Interaction potertial of LJ with = 1and = 1.

n #

4 1212 66
Tom T 5.4

Fij =

and = R isthe desireddistancebetweentwo robots. We derive the forcefunction

for interaction betweentwo robots as:

2d 12 c 6#
r13 r?

Fi;j =24 (35)

Again, F Fmax IS the magnitude of the force between two robots, and r is
the distance between the two robots. The variable aects the strength of the
force,while c and d cortrol the relative balancebetweenthe attractiv e and repulsive
componerts. In orderto achieve optimal behavior, the valuesof , c, d, and F,,x must
be determinedaswell asthe amourt of friction. Our motivation for trying the LJ force

law is that (dependingon the parametersettings)it can easilymodel crystalline solid
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formations, liquids, and gases. The pseud@ode of the physicomimeticsalgorithm
that usesthe LJ force law for robot-robot interactions can be seenin Figure 3.4.
By changing the parameter settings of the force law, we can model liquid or solid

behavior of the swarm.

3.5 Summary

We presetted two approatesto the physicomimeticsframework which are capableof
distributed cortrol of robots in a swarm. In the physicomimeticsframework, virtual
physics forces drive a swarm robotics systemto a desired con guration or state.
Through the sensorsand e ectors robots senseand react to virtual forcesfrom other
robots and environment as if these forcesare real. These approades provide us
with two advantages: complex behavior of the systemcan be achieved from simple

interactions betweenrobots, and the behavior scalesto large numbers of robots.
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float distance, turn, vx, vy, delta .vx, delta vy

float netforce, c, d,

float deltax, deltay, current X, current y, next X, next.y
float delta t = 1.0

float VMAX= 20.0

float FR= 0.9

float R = 50.0
float Fx =0
float Fy =0

float TIMESTEP= mass= 1.0

void compute_ newlocation()

v=FR*v

for all robots except this robot r;
determine distance r to robot r;j
determine the spherical coordinate to r;
if (r <=15 * R)

netforce = interactionForce (R, 1)

endif
Fx = Fx + (netforce * cos( ))
Fy = Fy + (netforce * sin( ))

endfor
delta -vx = TIMESTEP* Fx / mass
delta vy = TIMESTEP* Fy / mass

vX = vx + delta _vx
vy = vy + delta _vy
vV = sgrt(vx  * vX + vy * vy)
if (v > VMAX)
vx = (vx * VMAX)
vy = (vy * VMAX)v
endif
deltax = vx * TIMESTEP
deltay = vy * TIMESTEP
next x = current x + deltax
next .y = current y + deltay
end compute_ newlocation

float interactionForce (desiredDist ance, distance)

float attractive, repulsive, force
attractive =2 * d * pow(desiredDistan ce,12) / pow(distance,13)
repulsive = ¢ * pow(desiredDistan ce,6) / pow(distance,7)
force = 24 * * (attractive - repulsive)
if (force > FMAX)// FMAXs a learned parameter
force = FMAX
if (force < -FMAX)
force = -FMAX

return force
end interactionForce

Figure 3.4: Pseudaode of the physicomimeticsalgorithm that usesthe LJ force law
for robot-robot interactions.



Chapter 4

Evolutionary Learning

4.1 Intro duction

Motivated by Darwinian ewlution and natural selection,Evolutionary Learning (EL),
has been rapidly deweloping and gaining popularity as a powerful generallearning
approad. The madine learning comnunity recognizeseL as a population-based
learning technique that can be usedto nd exact or appraximate solutionsto opti-
mization and seart problems. Symbolic systemssud as rule-basedsystemsas well
as sub-synbolic systemssud as arti cial neural networks have used ewlutionary
learning as an optimization tool. EL systemsallow selectionof an optimum or most
satisfactory individual in the last generationasthe nal learnedsystem (Yao, Liu,
and Darwen 1996).

Our reasondor choosingEL depend on the following three motives: rst, we have
the necessarybadkground for implemerting ewlutionary learning systems;second,
we are aware that ewlutionary learning outperforms Reinforcemeh Learning (RL)
in non-Markovian tasks (de Croon, van Dartel, and Posma2005). Croon empirically
demonstratesthat RL and EL methods result in di erent levels of performancewhen
appliedto a non-Markovian task like the active categoricalperceptiontask (ACP). In
the ACP task, the agen hasto categorizefalling objects by catching or avoiding them.

During the ACP task, the proportion of the ambiguous sensorstates can be varied.
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Croon et al. demonstratethat EL outperformsRL at all levels of sensorambiguity
and the relative performanceof EL increaseswith the proportion of ambiguoussensor
states. Croon arguesthat the reasonfor this performancedi erence is that in RL the
learnedpolicy consistsof those state-action pairs that individually have the highest
estimated values, while the performanceof a policy for a non-Markovian task highly
dependson the combination of state-action pairs selected.The third reasonfor using
this population-basedstochastic algorithm is that it quickly generatesindividuals
that have robust performance.

Given generalizedforce laws, sud as the Newtonian force law or the Lennard-
Jones (LJ) force law that we discussedin Chapter 3, it is necessaryto optimize
the parametersto adieve the best performance. We accomplishthis task using
an Evolutionary Algorithm (EA). We dewelop an EL systemfor a swarm of robots
learning the obstacleavoidancetask (Spears,Jong, Baek, Fogel,and de Garis 1993).
Our intention is to have the robots learn the optimum parametersettings of the force
laws (rules); thus they successfullymaintain formation while avoiding obstacles,and

readiing a goal in a complexobstacle-ladenenvironmert.

4.2 Evolutionary Algorithms

We usean Evolutionary Algorithm (EA) to optimize force law parametersnecessary
for a swarm of robots to learn to navigate within a complexenvironmert with obsta-
clesand a goal. EAs are a part of the EL approad and as sud are motivated by
biological ewlution. An organism'sattributes sud asits anatonmy and behavior are
decidedby its genot/pe or biological data structures. In a computer program these
data structures can be easily manipulated and can alsobe interpreted as information

that encalesdi erent characteristics (phenotype) of the organism. An EA can use
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Randomly generate an initial population of N individuals
Evaluate the initial population
While termination criterion  not met
Select parents
Apply reproduction operators and produce children
Evaluate children
Select individuals for next generation
endwhile

Figure 4.1: Typical EA pseud@ode.

genetic operators sud as reproduction, natural selection, mutation, reconbination,
and competition which are inspired by Darwinian ewlution. Thus, using an EA to
optimize parametersettingsfor a robot or any medanical devicemakesperfectsense.
EAs are stochastic optimization algorithms that ewlve an optimum solution from
arandomly initialized setof candidatesolutions, modifying individuals in the solution
spaceto perform better in the ervironmert. An EA usesa tness ewaluation function
to determine the quality of an individual. Genetic operators sud as reconbination
and mutation are usedto create o spring from existing individuals. The relative
quality of an individual in the population determinesthe individual's survival and its
capability to reproduce. The initial population or the rst generationof candidate
solutionsare usually randomly generated,and the subsequengenerationsare decided
by the tness of the individuals basedon the tness proportional selectionsdeme.
Fitness proportional selectionassuresthat individuals with higher tness get to re-
produce new individuals for the next generation, and that the individuals perform
poorly in the ervironment will evertually perish. Maintaining the diversity of the
population of solution spaceis extremely important; the diversity of the population
can be maintained using genetic operators like reconbination and mutation. Figure

4.1 shows the typical executionstepsof an EA.
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The commonly usedEA in Figure 4.1 maintains a constart population size,but
the size of the child population can vary basedon the implemertation type of the
EA. Though all types of EAs guarartee a solution in the solution space,when the
termination criterion is met, they do not guarartee the optimality of a solution. This
may actually causethe learning algorithm to get studk in a local optimum. Carefully
choosingmore suitable strategiesspeci ¢ to the problem domain being studied could

prevert the EA from getting studk in a local optimum.

4.2.1 Representation of an Individual

Choosing an e cient represetation (the genotype) for an individual is one of the
important EA designdecisions.There are many ways to represem an individual, and
the choice of represemation is strongly dependert on the problem that we needto
solve. When choosing a represetation we should bear in mind that this decision
determineshow the tness of the individual is evaluated and what type of genetic
operatorsare usedto createa newpopulation for the next generationfrom the currert
population. There are three commonlyusedrepresetations: bit-strings, integersand
real values.

When optimizing parameterswith real values, we can naturally encale the real
numbers directly in the individual represetation (seeTable 4.1). Eadc of the X; is
referredto as an \allele" of the genotpe. Sincewe ewlve parametersfor the force
laws, we usereal valuesrestricted to an upper and a lower bound in our individual
represetation. We represeh our forcelaw parametersin a vector data structure. the
interpretation of this structure changesbasedon the type of force law that is being

used.
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| Individual | X1 | X2 | ... | X, |

Table 4.1: An individual is represetted as n real numbers.

4.2.2 Fitness Evaluation

Another major stepin the EA executionis evaluating the tness of an individual in a
population. The tness function quarti es the relative strength of an individual com-
paredto other individuals in the population. This allows the EA to rank individuals
and determinethe individuals that are allowed to reproduce (selection probability).
In one possiblesdheme,individuals that have higher tness than the average tness
of the population are allowed to reproduce and cortribute their genetic makeup to
future generations.

The tness ewaluation alsodependson the represetation of the individuals. When
the individual is represeted as a real-valued structure, we map this represetation
to a tness function that ewaluatesthe individual's tness to a real value as shown

below.

F:R" | R (4.1)

4.2.3 Genetic Op erators

EAs usegeneticoperatorsto createo spring from an individual or seeral individuals
in the currernt population. The two main genetic operators are reconbination and
mutation. Basedon the type of EL approad, the use of these operators may vary.
Geneticoperatorshelpto maintain the geneticvariation of a population, thusavoiding
premature cornvergenceof that population.

There are numerous mutation techniquesin the literature and they depend on
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Paret [0|1|1/0|1]1/1|0]1
Ospring |[0|1/0|0(2}(2]1|0|1

Table 4.2: Beforeand after bit- ip mutation of a bit-string represetation.

Paret [3(1|4|7|0(2|/5|8|6
Ospring |3|1|/5|7(0(24|8|6

Table 4.3: Before and after two-swap mutation of an integer represetation.

the type of individual represetation. Bit-string represetations usea bit- ip  method
(seeTable 4.2). In this method, the EA randomly picks an allele (a bit) and logically
negatesthe value of that allele. A standard mutation rate is P, = 1=L, wherelL is
the length of the genoype.

The two-swap operator is usedfor permutation integer represetations. The EA
randomly picks two alleles and swaps their positions within the individual. This
successfullyrestricts the duplication of any of the chosenalleles(seeTable 4.3).

Gaussianmutation is typically usedin real-value represetations. This method
adds a randomly generatedreal value from a Gaussiandistribution with mean 0.0
and standard deviation to an allele chosenwith probability 1=L (seeTable 4.4).

Sincewe represeh force law parameterswith real values,we use Gaussianmuta-
tion asone of the geneticoperatorsin our EA. An executiontrace of our Gaussian
mutation operator is shovn in Figure 4.2.

The other widely usedgeneticoperator is the reconbination operator, alsoreferred

to as "crossover”. Reconbination createsone or more o spring by merging alleles

Parent 13141 2.4 47]10.2| 2.2 15 41| 2.6
GaussianStep | 1.3 4.1 | 2.4+0.7 | 4.7/ 0.2|2.2|15+0.3 (4.1|26
O spring 1.3|4.1 3.1 4710222 1.8 41|26

Table 4.4: Before and after Gaussianmutation of a real-value represetation.
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for all individuals in the population
makea copy of the i individual
for all alleles in the copied individual
if ( U@©;1) <Py )
add N(0; ) to the j™ allele

endif

do boundary checking on the mutated values
endfor
replace i individual with the copy

endfor

Figure 4.2: Pseud@ode of Gaussianmutation.

from two or sewral parerts. The most popular reconbination methods are one-
point, multi-p oint and uniform reconbination. In one-point crossweer, two parerts
are split at a single point. Then the two allele segmets are swapped to create two
o spring. In multi-p oint crosswer, the parert is split at multiple points and segmets
are swapped between pairs of cut points. In uniform crosseer, individual alleles
are swapped betweentwo parerts with a xed probability. Our EA usesone-point

crosswoer to produce o spring.

4.2.4 Selection

Selectiondeterminesthe survival of individuals from generationto generation. Our
EA uses tness proportional selection. In tness proportional selection,individuals
are given a probability of being selectedthat is directly proportional to their tness.
The executionstepsof the tness proportional selectionalgorithm are shown in Fig-
ure 4.3. We decidedto choose tness proportional selectionover other standard EA
selectionstrategies. Our prior obsenations have shavn that tness proportional se-

lection producesvery desirablebehavior for the obstacleavoidancetask. This may
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for all individuals in the population
compute cumulative expected number of offspring
endfor
r = U(0; 1)
population counter = 0
while population counter is less than population size
if ( r < cumulative expected number of offspring of individual i)
(offspring  counter of individual i) ++

r+=1
(population  counter)++
else
next individual  (i++)
endif
endwhile

create offspring

Figure 4.3: Pseudaode of stochastic universal sampling for tness proportional se-
lection.

be dueto the fact that selectionpressuredependson our evaluation function and the
population dynamicsas shovn by Sarma (Sarmaand de Jong 1998). Sarmashowved
that selectionpressureand performancedepend on the type of ewvaluation function
and the population dynamics.

The ( , ) selectionstheme,which is alsocommonlyusedby EA comnmunity pro-
ducesa local optimum whenusedin our obstacleavoidancetask. In ( , ) selection,
the EA generates o spring from a population of parerts ( > ), and from the

o spring it keepsthe bestindividuals to for the next generation.

4.3 EA for Obstacle Av oidance

Obstacle avoidanceis a commontask that robots needto accomplishin numerous
problem domains sud as seard and rescue,surweillance, chemical plume tracing,

terrain mapping and mine detection. Learning the optimal parametersettingsneeded
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to accomplishthe task is extremely important.
We deweloped a simulation tool consistingof an EA and a performancemeasure-
mert metric for a swarm of robots to learn the obstacleavoidancetask. We explain

our performancemeasuremen metric in Chapter 5.

4.3.1 Simulation Arc hitecture

Our simulation architecture, as shovn in Figure 4.4, consistsof four modules: an
EA for ewlving the population of force laws, an ervironment generator, a global
obsener which ewvaluatesthe performanceof a particular forcelaw, and a performance
measuremenmodule which evaluatesthe quality of the optimum forcelaw. A detailed

discussionof the performancemeasuremet module is provided in Chapter 5.

Figure 4.4: The architecture of the simulation tool.

Our EA is a population-basedstochastic optimization algorithm inspired by nat-

ural ewlution. The EA randomly initializes the initial population of force laws, and
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then, it mutates and reconbinesthe candidate solutions (individuals) basedon their
performancein our ervironmert. Finally, the EA createsa population of o spring
from the parent population of candidate solutions. Every individual in the popula-
tion is a vector of real-valued parameters,represeting an instantiation of either the
Newtonian or LJ force law (depending on the force law being optimized).

The ervironmert generatorcreatestask environmens to test the forcelaws. The
environmert consistsof robots, randomly positioned obstacles,and a goal. Each
force law is tested on n di erent environmert instancescreated by the environmert
generator. Each robot carriesa copy of the force law and navigatestowards the goal
while avoiding obstacles. Robots are given a limited amourt of time to accomplish
the obstacleavoidancetask and read the goal while maintaining the formation. We
refer to this asan evaluation run.

Ri+ R+ + Ry

f itnessing = - (4.2)

The global obsener ( tness function) evaluatesthe performanceof the force law
in an instance of the ervironmert and assignsa tness value, R;. Ead ewaluation
run must be completed within a speci ¢ time interval, and the tness assignmen
occurs at the end of the time interval which is also the end of an evaluation run.
The nal tness, fitnessi,q, of an individual is computedoncen ewaluation runs are
completed.

Once the termination criteria of the EA is met, the EA outputs the optimal
parameter setting for the force law that is being optimized. The termination criteria
of our EA is G generations. The top level executiontrace of our obstacleavoidance

EA is presetted in Figure 4.5
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generate n random instances of environments
generate initial EA population
for G Generations
for N individuals in the population
for k environment instances
evaluate an individual
sumthe fithess value
next environment instance
endfor
compute the fitness of the individual
next individual
endfor
select individuals for the next generation
apply genetic operators
create offspring
next Generation
endfor

Figure 4.5: The top level pseud@ode of our obstacleavoidanceEA.

4.3.2 Obstacle Avoidance Simulation Tool

Our obstacle avoidance simulation tool in Figure 4.6 is an extensionto Adam Sci-
ambi's original version of the physicomimeticssimulation tool*. The simulation is
implemerted using JAVA and runs on Linux-basedmadines.

The simulation tool consistsof a Graphical User Interface (GUI), a training mod-
ule with an EA, and a performanceevaluation module. Whether it is optimizing force
laws using the EA or ewaluating the performanceof the optimal parameter settings,
the usercan obsene the behavior of the robots in the ervironmert using the GUI.

Using slidersin the bottom right of the GUI, the usercan change:

the number of robots: a minimum of 1 robot to a maximum of 100robots. This

setsthe amourt of robots that are being trained or the number of robots that

thttp://www.cs.u wyo.edu/ wspears/ap.2D/DEMO.h tml
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Figure 4.6: Simulated tool for obstacle avoidance task

are being tested with the trained force law. All of the robots start in the bottom
left corner of the simulation world, but this could vary based on the starting

radius.

the number of obstacles: a minimum of 1 obstacle to a maximum of 100 ob-
stacles. This sets the amount of obstacles that are randomly placed in the
simulation world. Initially our robots are in a tight cluster, and high potential
energy (Spears, Spears, and Heil 2004) in this cluster creates an explosion when
the robots start moving. This explosion causes a large number of collisions
(proximity collisions), if there are obstacles near by. Also, when the robots
reach the goal, they rotate and adjust the formation to its minimum potential
energy state again, causing proximity collisions. To avoid proximity collisions,

we do not position obstacles close to the initial position of the robots and the
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goal. This provides our robots sufficient space to get into formation without

colliding with obstacles.

e sensor range: a minimum of 0.1R to a maximum of 19.9R. This sets the range
each robot perceives in its neighborhood. Smaller sensor range causes the robots
to detect a limited distance while higher sensor range allows them to detect

further. Our robots start learning their environment with a sensor range of

1.5R.

e starting radius: a minimum of 0.1R to a maximum of 9.9R. This sets the ini-
tial positions of each robot relative to each other. A smaller starting radius
positions robots closer to each other in a cluster, and a larger starting radius
positions them away from one another. The starting radius has no effect when
the robots start navigating towards the goal. When the robots are navigat-
ing, their positions are decided by the forces acting on them and the desired

separation distance R.

e friction: a minimum value of 0 to a maximum value of 1. Friction controls
the damping of the simulated robot’s velocity, providing system stability. This
controls the robot’s acceleration, preventing robots from launching out of the
simulation world. Friction is modeled by decreasing the robot’s velocity by a

constant multiplicative factor.

e time step: a minimum of 0.1 to a maximum of 5.0. The time step determines
how fast or slow the next update to the environment will happen. At the
minimum setting, there are frequent updates and at the maximum setting the

system is updated less frequently.

Using buttons in the bottom left of the simulation (see Figure 4.6, the user can:
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e “Start” button: releases robots from their initial position. The robots start

moving towards the goal through the obstacles.

e “Stop” button: stops the robots movement and put them back at the initial

start position.
e “Restart” button: stops the simulation and restarts it.

e “Open Defaults” button: opens a window for the user to choose the types of
robot formation: triangular (hexagon) or square, and if the formation is in two
dimensions (2D) or three dimensions (3D). The button label switches to “Close

Defaults” once the window is open and closes the window when pressed again.

e “Quit” button: terminates the simulation run, closes all the windows and re-

leases the memory back to the system.

Using drop down menus, the user can:

e select the time interval to update the graphic canvas where the simulation world
is displayed using “Cycles/Frame”. The menu consists of five options: 1, 5, 10,
100, 500, and 1000. The option “1” updates the display canvas every time step
and the option “1000” updates the canvas every 1000 time steps. The system

updates the robot positions every time step regardless of updates on the canvas.

e change the robot formation from 2D to 3D or 3D to 2D while the robots are in
the field.

e change the robot formation from triangle (hexagon) to square or square to

triangle (hexagon) while the robots are in the field.

A User can display the connectivity of the robots in formation by clicking the

“Connect” box; if two robots are in their sensor range there is a line drawn between



45

the two robots. Error and Noise in the simulation world are two other options that a

user can choose to display.

4.4 Fitness Evaluation for Obstacle Avoidance

We carefully designed a fitness function to evaluate force law individuals. Our fitness

function consists of three objectives.

e maintaining formation: robots form hexagonal lattice formations and maintain
the formation while navigating. A robot attracts its neighbors if the neighbors
are 1.5R distance away and repulses its neighbors if the neighbors are closer

than 1.5R distance.

e avoiding obstacles: robots are capable of sensing the repulsive forces of obstacles
from a distance of R, + 20 from the center of the obstacle. R, is the radius of
an obstacle, which is 10. If the distance between the center of the robot and
the center of the obstacle is less than R, + 1, a collision occurs. The radius of

the robot is 1.

e reaching a goal: robots should reach the goal while maintaining formation and
avoiding collisions with the obstacles. Robots sense the global attractive force
of the goal at any distance. Robots are given a limited amount of time to reach

the goal.

In our EA, we focus on designing a multi-objective fitness function to evolve opti-
mal force law parameters. Since we do not change our objectives during optimization
of Newtonian and LJ force laws, we use the same evaluation function, The biggest

challenge is how to develop a compromise between the three objectives, so that the
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evaluation function is capable of providing us with an optimal solution that is not

biased toward any of the objectives.

4.4.1 Pareto Optimization

When there are multiple competing objectives, evolving an optimal solution is chal-
lenging. Multi-objective fitness functions are capable of providing compromising so-
lutions in the solution space. One of the most common techniques to multi-objective
optimization is to obtain a set of non-dominated solutions or a Pareto front. This
method is also referred to as Pareto Optimization.

Since an EA searches a population space for an optimal solution in a parallel
fashion, the EA seems amenable to Pareto optimization (Menczer, Degeratu, and
Street 2000). Deb has shown the difficulties with Pareto optimization (Deb 1999).
The EA does not converge on a true Pareto optimal set. Deb indicates that multi-
modality, deception, isolated optimum and collateral noise are reasons for this failure.
Multi-modality refers to the multiple Pareto optimal fronts; deception refers to EA
getting stuck in a local optima; an isolated optimum occurs when the solution space
is flat; and collateral noise occurs when partially good solutions are discarded due to
poor performance in another objective of the solution.

Numerous research articles have presented solutions to overcome difficulties with
Pareto optimization. One technique targets a specific solution in the solution space
by eliminating the need to consider the whole Pareto front by introducing a weighted
fitness function. The weighted fitness function allows the target solution to get a
higher fitness value, improving its probability of surviving to reproduce. The weights
are decided based upon the importance of different objectives (Sbhalzarini, Mller, and

Koumoutsakos 2000).
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4.4.2 Fitness Evaluation

We introduce a weighted fitness function with penalties to evaluate the force law
individuals in our population of force laws. Fitness evaluation occurs at every time

step for every individual within the permitted time limit.

fitness =W PC’ollision + w2PNoCohesicm + w?;PNotReachGoalInPermittedTime

The weighted fitness function consists of three components:

e a penalty for collisions,
e a penalty for lack of cohesion,

e a penalty for robots not reaching the goal.

The fitness function uses positive penalties, and it is a minimizing function.

4.4.3 Penalty for Collisions

For all of the swarm tasks that we discussed in Chapter 1, avoiding collisions with
obstacles in the task environment is important. In our simulation world, there are no
safety zones around the obstacles as presented in (Balch and Hybinette 2000). The
maximum sensing distance of the repulsive force on a robot from the center of an
obstacle is set at R, + 20. A collision occurs if the center of the robot is within the
perimeter of an obstacles. We add a penalty to the fitness score if the robots collide
with obstacles. All robots in the simulation world are evaluated for collisions and a

penalty is added at each discrete time step within the permitted time interval.



48

4.4.4 Penalty for Lack of Cohesion

Maintaining a cohesive formation is another important aspect, especially during CPT
and terrain mapping. With cohesive formations, robots maintain uninterrupted com-
munication paths between one another allowing efficient distribution of resources.
Additionally, this is important in mobile sensor networks where area coverage should
be maximized.

The cohesion penalty is derived from the fact that in a good hexagonal lattice (as
shown in Figure 3.1), interior robots should have six local neighbors at a distance of
R. A penalty occurs if a robot has more or less neighbors and the value of the penalty
is proportional to the error in the number of neighbors. This fitness pressure prevents
the robots from forming tight clusters that may cause overlapping, or separation of
the entire formation which in turn may cause the swarm to form sub-swarms when
navigating through obstacles. All the robots in the simulation world are evaluated
for cohesion and a penalty is added at each discreet time step within the permitted

time interval.

4.4.5 Penalty for Robots not Reaching the Goal

We also introduce a penalty to our fitness function for robots not reaching the goal
within a permitted time interval. In time critical search and rescue missions or defense
related missions, having the swarm achieve the goal in a limited permitted time
interval is extremely important. We added a penalty, if less than 80% of the robots
from the initial swarm did not reach the goal within the permitted time interval. At
the end of the permitted time interval, the EA evaluates the number of robots that
reach the goal, and if this number is less than 80%, a penalty is added. A robot has

reached the goal if the robot is within a 4R radius from the center of the goal.
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4.4.6 Offline vs. Online Learning

In our simulation world, a global observer or the fitness evaluation module assigns
a fitness value to each force law based on its performance in the task environment.
We refer to this traditional approach of optimizing parameters as “offline learning”.
In static environments, individuals are trained repeatedly until a termination criteria
is met and the desired behavior is achieved. The fitness evaluation is done using
an explicit multi-objective fitness function. The force laws are trained using our
obstacle avoidance environment. We present an empirical analysis of offline learning
in Chapter 5.

In real life, future scenarios such as environmental changes are unpredictable,
and the robots may have to face novel situations. A robot’s ability to react to novel
situations is a part of the intelligent reaction that we expect to achieve with our robot
swarms. We refer to this approach as “online learning”. One of the most challenging
problems in online learning is fitness evaluation. Robots that learn a force law in
a specific environment are unable to adapt to another environment using the same
force law. Thus, it is not feasible to use the same fitness evaluation function in the
new environment. We propose an implicit fitness evaluation paradigm for “online

learning” and present an empirical analysis in Chapter 6.

4.5 Parameter Optimization

For our robots to successfully accomplish their task, we optimize the two force laws
using an EA. The Newtonian force law’s parameters are different from the LJ force
law’s parameters. Our EA is not designed to optimize both force laws at the same
time. Therefore, we executed our EA twice to achieve optimal parameter settings,

once for the Newtonian force law and once for the LJ force law. Each force law
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contains parameters for robot-robot, robot-obstacle, and robot-goal interactions.

4.5.1 Methodology

To optimize the force law parameters, we use the training module of our simulation
tool. This training module allows the user to specify the type of force law, minimum
and maximum parameter value bounds, the population size, the termination criteria,
the mutation rate, and the crossover rate. The training module allows the user to
either predefine the EA random seed or use the system time.

Our 2D simulation world is 900 x 700 in size, and contains a goal, obstacles and
robots. Though we can use up to a maximum of 100 robots and 100 static obstacles
with one static goal, we placed a compromise figure of 40 robots and 90 obstacles in the
environment when using the training module. The goal is always placed at a random
position in the right side of the world, while the robots are initialized in the bottom
left area. The obstacles are randomly distributed throughout the environment, but
are kept 50 units away from the initial location of the robots and the goal to avoid
proximity collisions. Each circular obstacle has a radius R, of 10, and the square
shaped goal is 20 x 20. When 90 obstacles are placed in the environment, roughly
4.5% of the environment is covered by the obstacles (similar to (Balch and Hybinette
2000)). The desired separation between robots R is 50, and the maximum velocity
Vinae 18 20. Figure 4.7 shows 40 robots navigating through randomly positioned
obstacles. The larger circles are obstacles and the square to the right is the goal.
Robots can sense other robots within a distance of 1.5R, and can sense obstacles
within a distance of R, + 20. The goal can be sensed at any distance.

The permitted time interval for the robots to reach the goal from their initial
position is set at 2000 simulation time steps. This accounts for approximately 47

seconds of clock time (we use a Linux-based dual processor Dell machine with Intel
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Figure 4.7: 40 robots moving to the goal. The larger circles represent obstacles, while
the square in the upper right represents the goal.

Xeon 1500MHz processors). The EA was run with 100 individuals per population
and was allowed to terminate after 100 generations. It takes approximately four days
for our EA to achieve a parameter set that provides the desired behavior regardless

of the force law that is being optimized.

4.5.2 Optimizing Newtonian Force Law
The Newtonian force law contains two parameters: gravity and the power of the force

law.

miij
Fij =

(4.3)

rp
In addition to these two parameters, we evolved the maximum force and the

friction. The parameters we optimized are:

e (5, - gravitational constant of robot-robot interactions,

e p, - power of the force law for robot-robot interactions,



G Fow | p | Fr
Min. | 100.0 1.0 [{0.1]0.0
Max. | 5000.0 | 5.0 | 2.0 1.0

Table 4.5: The range of values for the Newtonian parameters.

e Fl ., - maximum force of robot-robot interactions,

e (5, - gravitational constant of obstacle-robot interactions,
e p, - power of the force law for obstacle-robot interactions,
e Flu, - maximum force of obstacle-robot interactions,
e G, - gravitational constant of goal-robot interactions,

e p, - power of the force law for goal-robot interactions,

® Flaz, - maximum force of goal-robot interactions,

F'r - friction in the system.
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In the initial population of individuals, parameter values are randomly initialized

between a predefined minimum and maximum bound. These bounds are shown in

Table 4.5.

Figure 4.8 shows the evolved Newtonian robot-robot force law up to a distance

of 80. A robot can sense another robot up to a distance of 1.5R, where R is 50.

The force is repulsive when the distance between robots is less than 50, and it is

attractive when the distance is greater than 50. The evolved F},,;, takes effect when

the distance between robots is less than 35.

Figure 4.9 shows the evolved Newtonian robot-obstacle force law up to a distance

of 80. Note that the maximum sensing distance of the repulsive force on a robot from
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Figure 4.8: Evolved Newtonian force law for robot-robot interactions.

the center of an obstacle is set at R, + 20. At distance 0, the robot is closest to the
obstacle and Fi,,4,, is in effect, making the force between a robot and obstacle highly
repulsive. After distance 30, the effect of the repulsive force diminishes as the robot
moves away from the obstacle.

Figure 4.10 shows the evolved Newtonian robot-goal force law up to a distance of
80. A Robot can sense the goal force globally. At distance 0, the robot is closest to
the goal and at distance 80, robot is further away from the goal. The evolved force
law for the robot-goal interaction is constant regardless of the distance from the robot
to the goal. The robots sense the maximum attractive force of F,,,, from the goal.
It is our intention to avoid clustering of robots at the goal and our evolved robot-goal
interaction is capable of avoiding this effect of the robots once they reach the goal,

preserving the robot’s lattice formation.
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Figure 4.9: Evolved Newtonian force law for robot-obstacle interactions.

Robot-Goal Interaction of Newtonian Force Law
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Figure 4.10: Evolved Newtonian force law for robot-goal interactions.
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4.5.3 Optimizing LJ Force Law

The LJ force law contains four parameters: the strength of interaction, a non-negative

attractive constant, and a non-negative repulsive constant.

12 6
2do co ] (4.4)

Fij = 24e er i

In addition to these three parameters, we evolved the maximum force and the

friction of the system. The parameters we optimized are:

e ¢, - strength of the robot-robot interactions,

e ¢, - non-negative attractive robot-robot parameter,

e d, - non-negative repulsive robot-robot parameter,

e Flue, - maximum force of robot-robot interactions,

e ¢, - strength of the obstacle-robot interactions,

e ¢, - non-negative attractive obstacle-robot parameter,
e d, - non-negative repulsive obstacle-robot parameter,
e Flu, - maximum force of obstacle-robot interactions,
e ¢, - strength of the goal-robot interactions,

® ¢, - non-negative attractive goal-robot parameter,

e d, - non-negative repulsive goal-robot parameter,

® Flaz, - maximum force of goal-robot interactions,

e F'r - friction in the system.
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€ Friax c d | Fr
Min. | 1.0 | 1.0 | 1.0 | 1.0 | 0.0
Max. | 20.0 | 5.0 | 10.0 | 10.0 | 1.0

Table 4.6: The range of values for the LJ parameters.

Again, in the initial population of individuals, the parameter values are randomly
initialized between a predefined minimum and maximum bound. These bounds are
shown in Table 4.6.

Figure 4.11 shows the evolved LJ robot-robot force law. Force is repulsive when
the distance between robots is less than 50, and it is attractive when the distance is
greater than 50. The evolved F),,., takes effect when the distance between robots is

less than 45.
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Figure 4.11: Evolved LJ force law for robot-robot interactions.

Figure 4.12 shows the evolved LJ robot-obstacle force law. The maximum sensing

distance of the repulsive force on a robot from the center of an obstacle is set at
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R, + 20. At distance 0, the robot is closest to the obstacle and F,q,, is in effect,
making the force between a robot and obstacle highly repulsive. After distance 14, the

effect of the repulsive force diminishes with the robot moving away from the obstacle.

Robot-Obstacle Interaction of Lennard-Jones Force Law
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Figure 4.12: Evolved LJ force law for robot-obstacle interactions.

Figure 4.10 shows the evolved Newtonian robot-goal force law. A Robot can sense
the goal force globally. At distance 0, the robot is closest to the goal and at distance
80, robot is further away from the goal. Again, the evolved force law for the robot-
goal interaction is constant regardless of the distance from the robot to the goal. The
robots sense the maximum attractive force of F},q,, from the goal. Again this evolved
robot-goal interaction is capable of avoiding any clustering of the robots once they

reach the goal, preserving the robot’s lattice formation.
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Figure 4.13: Evolved LJ force law for robot-goal interactions.

4.6 Summary

In this chapter, we first discussed the background of EL and EAs. Evolutionary
Learning (EL) is motivated by Darwinian evolution and has been rapidly developing
and gaining popularity as a powerful general learning approach. We use an Evolu-
tionary Algorithm (EA) to optimize the force law parameters necessary for a swarm
of robots to learn a complex environment with obstacles and a goal. Given gener-
alized force laws, such as the Newtonian force law or the LJ force law (discussed in
Chapter 3), it is necessary to optimize the force law parameters to achieve the best
performance.

Then we presented a discussion on EA strategies and our motivation for select-
ing certain strategies. EAs are stochastic optimization algorithms that evolve an
optimum solution out of a randomly initialized set of candidate solutions; slowly

perturbing individuals in the solution space to perform better in the environment.
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The EA uses a fitness evaluation function to determine the quality of an individual.
Genetic operators such as recombination and mutation are used to create offspring
from existing individuals. The relative quality of an individual in the population
determines the individual’s survivability and its capability of reproducing. Choosing
an efficient representation (the genotype) for an individual is one of the important
decisions. Our force law parameters have a real-value representation bounded by
minimum and maximum limits. We use two genetic operators, Gaussian mutation
and one-point crossover to produce offspring. We use a weighted fitness function with
penalties to evaluate the force law performance.

Finally we introduced our simulation tool and presented the behavior of the
evolved parameters. Our simulation tool consists of a Graphical User Interface (GUT),
a training module with an EA and a performance evaluation module. The simulation
tool allows users to select different options when setting up the environment. Our
evolved parameters produced far superior results than the results presented in the

literature. We present an empirical analysis of our results in Chapter 5.



Chapter 5

Offline Performance

5.1 Introduction

In Chapter 4, we presented our methodology of evolving force law parameters for the
Newtonian and LJ force laws. We called this “offline learning”. In this chapter, we
present an empirical analysis of the two force laws. We evaluate the performance of a
swarm of robots moving through an obstacle field and reaching a goal using the force
laws that were optimized by the EA.

Prior research in this area has generally focused either on a small number of
robots moving through a large number of obstacles, or a large number of robots mov-
ing through a small number of obstacles (Balch and Arkin 1998; Balch and Hybinette
2000). However, the more difficult task of moving a large number of robots in forma-
tion through a large number of obstacles is generally not addressed. Also, proposed
metrics of performance are not complete, ignoring criteria such as the number of
collisions between robots and obstacles, the distribution in time of the number of
robots that reach the goal, and the connectivity of the formation as it moves. Our
objective in this chapter is two-fold. The first objective is to provide a more com-
plete set of metrics from which meaningful comparisons can be made. Second, we use
these metrics, coupled with a more complete experimental methodology, to examine

(a) different strategies for performing the task, and (b) trade-offs between different

60
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criteria.

5.2 Methodology

The simulation tool consists of training and performance evaluation modules. We
use the training module to evolve parameter sets for either the Newtonian or the LJ
force laws. As shown in Figure 5.1, in traditional offline approaches, a simulation tool
evolves force law parameters from a set of initial force laws, and the final product is

the optimized force law that achieves the desired behavior.

‘ Swarm Simulation ’

AN "5

Initial - Offline Learning, Final Rules
Rules "| such as an Evolutionary that achieve the
Algorithm (EA) desired behavior

Figure 5.1: Traditional offline approach of evolving force law rules.

In this approach, a population-based EA optimizes the force laws while the fitness
function assigns a fitness value to each force law based on its performance in the
environment as shown in Chapter 4.

Once the optimal force law is found, it is important to measure the quality of this
force law. The performance evaluation module evaluates the optimized force laws
with respect to four metrics: collisions, connectivity, reachability, and time to goal.

Again, our 2D simulation world is 900 x 700 in size, and contains a goal, obstacles
and robots. We evaluated the performance of the optimized force laws with 20 to 100
robots, 20 to 100 obstacles, and a goal in the environment. The goal is always placed at
a random position in the right side of the world, while the robots are initialized in the

bottom left area. As in the training module, the obstacles are randomly distributed



62

throughout the environment, but are kept 50 units away from the initial location of
the robots and the goal to avoid proximity collisions. Each circular obstacle has a
radius R, of 10, and the square shaped goal is 20 x 20. When 100 obstacles are placed
in the environment, roughly 5% of the environment is covered by the obstacles (again
similar to (Balch and Hybinette 2000)). The desired separation between robots R is
50, and the maximum velocity V.. is 20. Robots can sense other robots within a
distance of 1.5R and can sense obstacles within a distance of R, + 20. The robots

can sense the goal globally. The radius of the robot is 1.

5.3 Performance Metric

After optimization, the best force law is evaluated with our performance module.
The performance module consists of four metrics and these metrics provide us with
valuable measurements of the quality of the evolved force law. The force law evalu-
ation in Chapter 4 considers three different criteria: collisions, cohesion, and time to
goal. Besides these three criteria, in our performance metric we provide an additional

criterion, reachability:.

e Collisions: our fitness function added a penalty when the robots collide with
an obstacle. Thus, it is important to measure the number of robot collisions
when the robots are navigating through the obstacle course using the previously
evolved force law. This measurement is taken at every time step within the
permitted time interval and reported as the number of robots collided within
that time interval. When robots collide with obstacles we consider such robots

to be damaged, but they can still move with the formation to the goal.

e Swarm connectivity: One of our main objectives is to have our swarm main-

tains a hexagonal lattice formation until it reaches the goal. To accomplish
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this objective, we added a penalty to our fitness function when the force laws
were trained. To evaluate the quality of the evolved force law, we measured the
largest number of robots in the swarm that are connected via a communication
path. The connectivity result we provide is the minimum size of the largest con-
nected swarm as the swarm moves to the goal. Two robots are connected if their
separation is < 1.5R. This is an important measure of a robot swarm deployed
as a sensor network, since it is extremely important to maintain communication

path(s) among robots in the sensor network.

Reachability: If a considerable number of robots do not reach the goal regardless
of higher swarm connectivity, then we are unable to successfully accomplish a
part of our objective task. Robots not reaching the goal is an indication of
lack of quality of the evolved force law. Since we believe the number of robots
reaching the goal is important, we measure the percentage of robots reaching
the goal at the end of the permitted time interval. We consider that a robot

has reached the goal if it is within 4R distance of the goal.

Time to goal : All objectives in our offline evaluation function depend on the
amount of time permitted for the swarm to reach the goal. We set 2000 sim-
ulation time steps as the permitted time interval for the robots to reach the
goal from the start position. This is also the allotted time interval during EA
learning. At each time step, we measure the amount of robots reaching the goal,
and if 80% of the robots are at the goal, we consider this amount of time as the
“Time to goal”. If this result is less than 80%, we record the “Time to goal”
as 0. Though this is a strict metric of measurement, we think it is important
in some critical applications where the number of robots surviving to reach the

goal matters.
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connectivity
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Figure 5.2: Performance metric; seven robots in a hexagonal lattice over the goal.

Since our objective is to provide a more complete set of metrics from which mean-
ingful comparisons can be made, the importance of the collision, connectivity, reach-
ability, and time to goal metrics is obvious. Although each metric provides useful
information, a more complete picture arises by considering all. Figure 5.2 shows

seven robots with 100% connectivity and 100% reachability at the goal.

5.4 Newtonian Experimental Results

Tables 5.1 — 5.4 show the number of collisions, connectivity, reachability, and time
to goal results for the optimized Newtonian force law. A ‘~’ entry indicates that at
least 80% of the robots did not make it to the goal within the allotted time period.
All experiments are averaged over 50 independent runs.

It is clear in Tables 5.1 that collisions are not a primary concern. With 100 robots
and 100 obstacles, only four robots collided with obstacles and this is only a 4%
collision rate which is negligible. Interestingly, the number of obstacles do not appear
to be the important factor here, although the number of robots is.

With 20 and 40 robots, the connectivity remains low (see Table 5.2), but with

more than 40 robots, the connectivity is amazingly high at 100%.
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Obstacles
robots | 20 | 40 | 60 | 80 | 100
20 0O]0]01O0 0
40 0O]0]01O 0
60 0]01] 0|2 3
80 0101|313 3
100 012|214 4

Table 5.1: Number of robots that collided with obstacles using the Newtonian force
law.

Obstacles

robots | 20 | 40 | 60 | 80 | 100
20 3 5 10 8 10
40 11 | 17 | 25 | 21 | 23
60 60 | 60 | 60 | 60 | 60
80 80 | 80 | 80 | 80 | 80
100 | 100 | 100 | 100 | 100 | 100

Table 5.2: Minimum number of robots that remain connected using the Newtonian
force law.

Obstacles

robots 20 40 60 80 100
20 100% | 100% | 95% | 84% | 80%
40 100% | 97% | 2% | 55% | 52%
60 0% 0% 0% | 0% | 0%
80 0% 0% 0% | 0% | 0%
100 0% 0% 0% | 0% | 0%

Table 5.3: Percentage of robots reaching the goal using the Newtonian force law.
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When there are 20 robots, more than 80% of the robots reach the goal, but with
40 robots the number that reach the goal reduces with the increasing number of
obstacles (see Table 5.3). When the number of robots is above 40, no robots reach

the goal.

Obstacles

robots | 20 40 60 80 100
20 1160 | 1260 | 1290 | 1530 | 1920
40 1680 | 1790 — - -
60 — — — — —
80 — — — — —
100 — — — — —

Table 5.4: Time taken by 80% of robots to reach the goal using the Newtonian force
law.

Table 5.4 shows the amount of time taken by at least 80% of the robots to reach
the goal. When there are 20 robots, more than 80% of the robots reach the goal with
the time taken to reach the goal increasing with the number of obstacles. When there
are 40 robots, with 20 and 40 obstacles, 80% of the robots are capable of reaching
the goal within the time interval of 2000 time steps. When there are more than 40
robots, none of the robots reach the goal within the time interval of 2000 time steps.

When there are less than 40 robots, some reach the goal (Table 5.3). The time
to reach the goal increases as the number of obstacles increases. However, it is clear
that this is achieved by fragmenting the formation into small parts (Table 5.2). When
there are more than 40 robots, none reach the goal (within the time period). Instead,
the structure remains connected, but the strict rigidity of the structure prevents it
from making good progress through the obstacle field. It is clear from these results
that training with 40 robots does not yield a Newtonian force law that scales to a

larger number of robots.
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5.4.1 Solid Behavior

The Newtonian force law is effective in creating solid structures. This emergent
behavior of the Newtonian force law allows us to create rigid structures with very
high connectivity, but the major disadvantage is that it reduces the reachability of
robots. Another disadvantage is that the Newtonian force law does not scale well to
a large number of robots. Our observations show that given a longer time period,
the Newtonian force law is capable of improving reachability, but this is not desirable

due to time constraints in critical missions.

5.5 LJ Experimental Results

Tables 5.5 — 5.8 show the collision, connectivity, reachability, and time to goal results
for the optimized LJ force law. All experiments are averaged over 50 independent

runs.

Obstacles
robots | 20 | 40 | 60 | 80 | 100
20 0O]0]01|O 0
40 0O]0]01|O 0
60 0O]0]01O0 0
80 0O]01] 0] 2 2
100 0O(11]3]|3 4

Table 5.5: Number of robots that collided with obstacles using the LJ force law.

Again, it is clear that collisions are not a primary concern. As before, the number
of obstacles does not appear to be the important factor here, although the number
of robots is. The differences in collision results between the LJ and the Newtonian

force law are statistically insignificant.
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Obstacles

robots | 20 | 40 | 60 | 80 | 100
20 101011 11| 11
40 23 12312323 23
60 37137 (37|37 | 37
80 52 | 52 | 53 | b3 | 53
100 | 67 | 67 | 67 | 68 | 68

Table 5.6: Minimum number of robots that remain connected using the LJ force law.

Compared to the Newtonian force law, LJ connectivity remains low. Using the
Newtonian force law with 60 — 100 robots, the connectivity remained 100%, but with

the LJ force law the connectivity remains around 60%.

Obstacles

robots 20 40 60 80 100
20 100% | 100% | 98% | 95% | 95%
40 100% | 100% | 98% | 98% | 98%
60 100% | 100% | 98% | 98% | 98%
80 100% | 100% | 99% | 98% | 98%
100 | 100% | 100% | 99% | 98% | 98%

Table 5.7: Percentage of robots reaching the goal using the LJ force law.

Regardless of the number of robots and obstacles, the percentage of robots reach-
ing the goal using the LJ force law remains higher than 95%. This is a significant
improvement over the reachability results we attained using the Newtonian force law.

Comparing Table 5.8 with Table 5.4 clearly shows that the robots trained with
the LJ force law reach the goal faster than the robots trained with the Newtonian
force law.

Using the LJ force law, almost all of the robots make it to the goal, in all cir-

cumstances. The time to reach the goal increases slowly as the number of obstacles
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Obstacles

robots | 20 | 40 | 60 | 80 | 100
20 470 | 480 | 490 | 510 | 520
40 520 | 530 | 560 | 560 | 580
60 570 | 570 | 600 | 600 | 620
80 610 | 620 | 640 | 650 | 660
100 | 640 | 650 | 670 | 680 | 690

Table 5.8: Time taken by 80% of robots to reach the goal using the LJ force law.

and robots increases (with the number of robots having a larger effect). Also, swarm
connectivity remains reasonably high, ranging from 50% to 68%. Interestingly, swarm
connectivity increases as the number of robots increases and is almost totally unaf-
fected by the number of obstacles. In contrast with the Newtonian force law, the LJ
force law (which is trained with 40 robots) scales well with larger numbers of robots.
This provides evidence that the LJ force law is a good model for the swarm behavior

that we desire.

5.5.1 Fluid Behavior

Observation of the system behavior shows that the formation acts like a viscous fluid
rather than a solid. Although the formation is not rigid, it does tend to retain much of
the hexagonal structure. Deformations and rotations of portions of the fluid are tem-
porary manifestations imposed by the obstacles. Hence, the added flexibility of this
formation (over that achieved by the Newtonian force law) has a significant impact
on behavior. The optimized LJ force law provides low collision rates, very high goal
reachability rates within a reasonable period of time, and high swarm connectivity.

Figure 5.3 shows a sequence of snapshots of 50 robots navigating around a large
obstacle. Robots act as a viscous fluid while avoiding the obstacle.

In the first snapshot, robots are in a fully connected sensor network and are
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Figure 5.3: Fifty robots navigating around a large obstacle toward a goal. Robots
maintain full connectivity while avoiding the obstacle by acting as a viscous fluid,
using the LJ force law.

navigating towards the goal, but the robots have not faced the obstacle. The second
snapshot shows the swarm starting to flow around the obstacle on two fronts while
maintaining 100% connectivity. The third snapshot shows the robots on the two
fronts merging back together. In the final snapshot, the robots are back in a cohesive
formation when they have reached the goal. We observe that when the swarm reaches
the obstacle, it navigates around the obstacle as a viscous fluid while maintaining
100% connectivity and provides 100% reachability. This fluid type property of the

LJ force law is an emergent behavior of the swarm.
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5.6 Further Analysis of Force Laws

To further analyze our system, we also collected data concerning the change in the
connectivity and the percentage of robots reaching the goal over time. The resulting
graphs are far too numerous to present here, but we present representative examples.
A complete set of reachability results can be found in Appendix I and a complete set
of connectivity results can be found in Appendix II. All graphs are averaged over 50

independent runs.

Connectivity of 20 and 100 Robots Through 100 Obstacles Over 2000 Time Steps
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Figure 5.4: Change in connectivity over 2000 time steps for 20 and 100 robots through
100 obstacles using the Newtonian and LJ force laws.

Figure 5.4 illustrates the change in connectivity of the swarm over time. Two sets
of results are presented in this graph. The curves at the top are for 100 robots moving
through 100 obstacles. The robots controlled by the Newtonian force law remain fully
connected (although, as we know from the prior results, this is because the formation

has not succeeded in reaching the goal). However, the swarm connectivity for the LJ-
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controlled robots drops after 200 time steps as the formation begins to move through
the obstacle field. After 400 time steps, the formation connectivity increases as the
robots reach the goal.

The curves at the bottom are for 20 robots moving through 100 obstacles. In this
situation the Newtonian-controlled robots arrive at the goal, and the swarm connec-
tivity drops after 800 time steps and increases after roughly 1300 steps. Because the
LJ-controlled formation moves much more quickly, the formation connectivity drops
after 200 time steps and increases after roughly 300 steps. It is interesting to note that
the LJ-controlled swarm does not break apart as much as the Newtonian-controlled

Sswarin.

Reachability of 20 and 100 Robots Through 100 Obstacles Over 2000 Time Steps
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Figure 5.5: Percentage of 20 and 100 robots reaching goal through 100 obstacles over
2000 time steps using the Newtonian and LJ force laws.

Figure 5.5 shows how the number of robots reaching the goal changes with time.

Again, two sets of results are presented, for 20 and 100 robots moving through 100
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obstacles. The two left-most curves are for the LJ-controlled robots. Note, regardless
of the number of obstacles, robots start to arrive at the goal at roughly the same time
(300 time steps). With 20 robots, they all have arrived at the goal by approximately
500 time steps. This indicates that all robots arrived at the goal within a 200 time
step interval — a relatively narrow band in time. Increasing the number of robots to
100 increases the time interval to only 500 steps.

The other two curves are for the Newtonian-controlled robots. With 20 robots,
they start to reach the goal at 1000 time steps, and the interval is approximately 200
time steps. When there are 100 robots, none reach the goal within the allotted time

period.

5.7 Safety Zone

The concept of a “safety” zone was introduced in (Balch and Hybinette 2000). The
static obstacles are modeled with three layers of repulsive potentials as shown in the
Figure 5.6. When the robot is beyond the sphere of influence (), no repulsion is
generated. Within the sphere of influence, repulsion increases linearly until the robot
reaches the safety margin. When the robot is within the safety margin (M), the
magnitude of repulsion is oo.

Our physicomimetics framework does not assume the existence of a safety zone
around obstacles. The force laws evolved with the EA produce behavior where the
robots skirt the obstacles as closely as possible. This is consistent with the general
physicomimetics framework, where robots move in a fashion that minimizes energy
usage. However, as noted above, this can lead to collisions. In this section we examine
the trade-offs induced by the addition of a safety zone. Our EA did not learn the

force law with a safety zone around the obstacles. This experiment measures the
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Figure 5.6: Three layered safety zone. The obstacle is represented as a black circle in
the middle, and r is the distance from a robot to the center of the obstacle.

quality of the evolved force law when there is a safety zone around the obstacles.
We performed the same experiments as before, for 20 and 100 robots with varying
number of obstacles. All obstacles were given a safety zone of size 5. Hence, robots
can sense obstacles within a distance of R, + 25, where R, is 10. Again, the robots
were allowed 2000 time units to reach the goal. If the distance to a robot from the
center of the obstacle is less than 20, the robot senses the maximum repulsive force,
Fla. When this distance is greater than 20, the robots sense the normal force as
with the previous method without the safety zone. Using the safety zone, we extended
the range at which obstacles are sensed and also strengthen the repulsion near the
obstacle. A complete set of results with safety zone for both Newtonian and LJ force

laws can be found in Appendix III.

5.7.1 Newtonian Experimental Results

The introduction of the safety zone eliminated all collisions of robots with obstacles,
and the swarm connectivity results were similar. However, reachability was greatly

reduced and the time to reach the goal increased (Tables 5.9 and 5.10).



Obstacles
robots | 20 | 40 | 60 | 80 | 100
20 96% | 3% | 1% | 0% | 0%
100 0% | 0% | 0% | 0% | 0%

75

Table 5.9: Percentage of robots reaching the goal using Newtonian force law and

safety zone.

Obstacles
robots | 20 |40 | 60 | 80 | 100
20 180 — | — | = | —
100 — o e

Table 5.10: Time taken by 80% of robots to reach the goal using Newtonian force law

and safety zone.

The results were not unexpected. Since the Newtonian force law produces a

structure that acts like a solid, the addition of the safety zone makes it more difficult

for the formation to rotate and counter-rotate (an emergent property of the system)

through the obstacles.

5.7.2 LJ Experimental Results

As with the Newtonian force law, the introduction of the safety zone eliminated all

collisions of LJ-controlled robots with obstacles, and the swarm connectivity results

were similar.

Obstacles
robots 20 40 60 80 100
20 100% | 100% | 73% | 60% | 63%
100 | 100% | 99% | 90% | 86% | 80%

Table 5.11: Percentage of robots reaching the goal using LJ force law and safety zone.
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Obstacles
robots | 20 | 40 60 80 100
20 610 | 660 — — -
100 | 820 | 900 | 1050 | 1200 | 1740

Table 5.12: Time taken by 80% of robots to reach the goal using LJ force law and
safety zone.

Once again, reachability was reduced and the time to reach the goal increased.
However, the reduction in performance (see Tables 5.11 and 5.12) is not nearly as
severe as with the Newtonian-controlled robots. The additional flexibility of the

viscous fluid works far better.

5.7.3 Further Analysis of Safety Zone

Figures 5.7 and 5.8 show the results of the same experiment, but with the addition
of the safety zones around all obstacles. As noted earlier, safety zones remove all
collisions, but the impact on reachability is clear. Even with only 20 robots, the
performance with the Newtonian force law is severely impacted. The performance of
the LJ-controlled robots is also impacted but to a lesser extent. The time interval that
the robots arrive at the goal remains relatively unaffected except for the “LJ_100_100”
(more than 80% reach the goal within allotted time limit of 2000). The number of
robots reaching the goal is definitely compromised. The swarm connectivity remains

quite similar to earlier connectivity results with no safety zones.

5.8 Summary

This chapter presented a novel extension to our physicomimetics framework, with the
use of a generalized Lennard-Jones force law. We then summarized how we tested the

force laws within the context of moving robotic swarm formations through obstacle
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Figure 5.7: Change in connectivity over 2000 time steps for 20 and 100 robots through
100 obstacles using Newtonian and LJ force laws with a safety zone around obstacles.
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Figure 5.8: Percentage of 20 and 100 robots
over 2000 time steps using Newtonian and LJ force laws with a safety zone around

obstacles.
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fields to a goal.

In addition, we presented novel metrics of performance, namely, the number of
robots that collide with obstacles, their connectivity, the number of robots that reach
the goal, and the time taken by at least 80% of the robots to reach the goal. Although
each metric provides useful information, a much better picture arises by considering
all metrics. Our empirical analysis is methodical, ranging from 20 to 100 robots, and
ranging from 20 to 100 obstacles.

Our results indicate that the LJ-controlled robots have far superior performance
to our Newtonian-controlled robots. This is because the emergent behavior of the
LJ-controlled swarm is to act as a viscous fluid, generally retaining good connectivity
while allowing for the deformations necessary to smoothly flow through the obstacle
field. Despite being trained with only 40 robots, the emergent behavior scales well
to larger numbers of robots. In contrast, the Newtonian-controlled swarm produces
more rigid structures that have more difficulty maneuvering through the obstacles.
Furthermore, performance drops dramatically when there are more than 40 robots.

Table 5.13 summarizes the results.

Newtonian LJ
Robots 40 | 60 | 80 | 100 || 40| 60 | 80 | 100
Collisions 0| 3] 3 4 0 0 2 4
Connectivity 23160 | 80 | 100 || 23| 37| 53| 68
Reachability% 521 0| O O 98| 98| 98| 98
Time to Goal by 80% | —| —| - — || 580 | 620 | 660 | 690

Table 5.13: Summary of results for 40 — 100 robots, with 100 obstacles.

Finally, we used the metrics to consider the trade-offs that occur when a safety
zone is introduced around the obstacles. As expected, collisions never occur, but

significant reductions in reachability arise. The connectivity of the swarm is similar



to the results seen without the safety zone.
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Chapter 6

Online Learning

6.1 Introduction

Swarm engineering is difficult due to numerous constraints, such as noise, limited
range of interaction with other robots, delayed feedback, and the distributed auton-
omy of the robots. One potential solution is to automate the design of multi-robot
swarms in simulation as we have done in Chapter 4, using evolutionary algorithms
(EAs) (Grefenstette 1989; Wu, Schultz, and Agah 1999). In this paradigm, the EA
evolves the behaviors of the agents (their local interactions) such that the global task
behavior emerges. A global observer monitors the collective and provides a measure
of performance to the individual agents. Agent behaviors that lead to desirable global
behavior are hence rewarded, and the collective system is gradually evolved to provide
optimal global performance.

There are several difficulties with this offline approach. First, a global observer
may not exist. Second, some (but not all) agents may experience some form of
reward for achieving task behavior, while others do not. Third, this reward may
be delayed or may be noisy. Fourth, the above paradigm works well in simulation
(offline) but is not feasible for real-world online applications where unexpected events
occur. Finally, the above paradigm may have difficulty evolving different individual

behaviors for different agents (heterogeneity vs homogeneity).

80
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6.2 Constraints With Offline Learning

Offline learning in simulation provides the capability of controlling robot parameters
as well as the environment parameters. These capabilities do not exist when the
robots are in the field, and the robot swarm must quickly learn and adapt to a new
environment. If the robots learn their aggregate behavior in simulation and they are
introduced to a new environment, it is certain that the robots will not successfully

accomplish the task due to several constraints such as:

e non-existence of a global observer: in simulation, the global observer assigns a
fitness value to each individual based on its performance in the environment.
The environment is mostly static in nature and the robots evolve an aggregate
behavior to accomplish a task in that specific environment. When the robots
are introduced to a new environment with the rules they learned in simulation,
these rules are insufficient. If a global observer does not exist in the new envi-
ronment to provide performance feedback, robots will not accomplish the task

successfully.

e noise: noise in the system could be introduced by several sources such as sensors,
non-deterministic action by the robots, and environmental changes. Filtering
out noise in real world is extremely difficult and challenging. Noisy environments
may cause the robots to delay their response, and this may even jeopardize time

critical missions.

e only a subset of the robots receive a reward and reward may be delayed: noise
and discretization of robot sensors and effectors may cause loss of information.
This could either delay the reward to the robots or provide the reward to only

a subset of robots. Lack of reward or delayed reward could further degrade the
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swarm performance.

These constraints in offline learning approaches impede the continued evolution of
aggregate swarm behavior in changing environments. Thus, it is absolutely necessary
to design new paradigms for swarm online learning. Our objective is to design a
conceptual paradigm for swarm online learning that can be used regardless of the
techniques used. This online learning paradigm has the ability to allow robots to
learn and adapt to unexpected scenarios in new environments. We propose a new
distributed online learning paradigm for robot swarms; called “Distributed Agent

Evolution with Dynamic Adaptation to Local Unexpected Scenarios” or DAEDALUS.

6.3 Distributed Agent Evolution with Dynamic Adaptation to Local Un-
expected Scenarios - DAEDALUS

With the DAEDALUS paradigm, we assume that agents (whether software or hard-
ware) move throughout some environment. As they move, they interact with other
agents. These agents may be of the same species or of some other species (Spears
1994). Agents of different species have different roles in the environment. The goal is
to evolve agent behaviors and interactions between agents, in a distributed fashion,
such that the desired global behavior occurs!.

Let us further assume that each agent has some procedure to control its own
actions in response to environmental conditions and interactions with other agents.
The precise implementation of these procedures is not relevant; thus they may be pro-
grams, rule sets, finite state machines, real-valued vectors, force laws, or any other
procedural representation. Agents have a sense of self-worth, or “fitness”. Agents

that experience direct performance rewards have higher fitness. Other agents may

!The work by (Watson, Ficici, and Pollack 2002) is conceptually similar and was developed
independently.
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not experience any direct reward but may in fact have contributed to the agents
that did receive direct reward. This “credit assignment” problem can be addressed
in numerous ways, including the “bucket brigade” algorithm or the “profit sharing”
algorithm (Grefenstette 1988). Assuming that a set A of agents has received some
direct reward, both algorithms provide reward to the set B of agents that have inter-
acted (and helped) those in A. Further trickle-back rewards are also given to those
agents in set C that helped those in B, and so on. Agents that receive no rewards

lose fitness. If fitness is low enough, agents stop moving or die.

6.3.1 Distributed Evolution

Evolution in multi-robot systems is challenging in both a conceptual and applied per-
spective. Evolving the aggregate behavior of the collective through deliberations with
neighbors and with limited sensory capabilities is much more difficult. These delib-
erations among robots may occur at different stages of the evolution under different
constraints, but preserving the aggregate behavior and accomplishing a task is of vital
importance to us. Our focus is to provide our robots with intelligent capabilities so
that the robots execute these capabilities in distributed fashion.

In our DAEDALUS paradigm, evolution occurs when individuals of the same
species interact. Those robots with high fitness give their procedures to agents with
lower fitness. Evolutionary recombination and mutation provide necessary perturba-
tions to these procedures, providing increasing performance and the ability to respond
to environmental changes. Different species may evolve different procedures, reflecting

the different niches they fill in the environment.
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6.3.2 DAEDALUS for Obstacle Avoidance

Each robot of the swarm is an individual in a population that interacts with its
neighbors. Each robot contains a slightly mutated copy of the optimized force law
rule set found with offline learning. This ensures that our robots are not completely
homogeneous. We allowed this slight heterogeneity because when the environment
changes some mutations perform better than others. The robots that perform well in
the environment will have higher fitness than the robots that perform poorly. When
low fitness robots encounter high fitness robots, the low fitness robots ask for the
high fitness robot’s rules. Hence, better performing robots share their knowledge
with their poorer performing neighbors.

When we apply DAEDALUS to obstacle avoidance, we focus on two aspects of our
swarm: reducing obstacle-robot collisions and maintaining the cohesion of the swarm.
Robots are penalized if they collide with obstacles and /or if they leave their neighbors
behind. The second scenario arises when the robots are left behind in cul-de-sacs.
This causes the cohesion of the formation to be reduced.

Due to the superiority of the L.J force law over the Newtonian force law, we decided

to use the LJ force law to test our online learning paradigm.

6.4 Transition from Offline to Online Learning

Our prior applications of EAs to design multi-agent systems have used the offline ap-
proach — a global observer assigns fitness to agents based on their collective behavior.
In the next section, we show how DAEDALUS can be applied to the obstacle avoid-
ance task in an online environment. In this application, recombination and mutation
operators provide the ability to respond to environmental changes (which can include

the addition and/or removal of agents).
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Figure 6.1: A long corridor with randomly placed obstacles and five goals.

6.4.1 Methodology

Each robot of the swarm contains a slightly mutated (1% mutation rate) copy of
the optimized LJ force law rule set found with offline learning. Again the force law
rules are mutated with Gaussian mutation (see Figure 4.2). All the robots have the
same initial fitness or “worthiness” of 1000 at the start. This fitness value does not
correlate with any other system parameters. There are five goals to achieve in a long
corridor, and between each randomly positioned goal is a different obstacle course
with a total of 90 randomly positioned obstacles. The online 2D world is 1600 x 950,
which is larger than the offline world. In our changed environment, each obstacle
has a radius of 30 compared to the offline obstacle radius of 10. So more than 16%
of the online environment is covered with the obstacles. Compared to the offline
environment, the online environment triples the obstacle coverage. We also increase
the maximum velocity of the robots to 30 units/sec, allowing the robots to move
1.5 times faster than in the offline environment. The LJ force law learned in offline
mode is not sufficient for this more difficult environment, producing collisions with
obstacles (due to the higher velocity) and robots that never reach the goal (due to
the high percentage of obstacles). The remaining system settings are kept the same
as with the offline methodology. Figure 6.2 shows an example of the more difficult
environment.

Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to the



86

Figure 6.2: 60 robots moving to the goal. The larger circles represent obstacles, while
the square in the upper right represents the goal. The larger obstacles make this
environment far more difficult for the robots to traverse.

next goal, but the robots that had collisions and made it to the goal are allowed to
proceed to the next goal. We assume that damaged robots can be repaired once they

reach a goal.

6.4.2 Collision Avoidance

To measure the performance of the DAEDALUS approach, an experiment is carried
out with 60 robots, 5 goals in the long corridor, and 90 obstacles in between each goal.
Our focus in this experiment is to test the ability of DAEDALUS to learn to avoid
robot collisions. The experiment was averaged over 100 runs with different robot,
goal, and obstacle placements. Each robot is given equal initial fitness and “seeded”
with a mutated copy of the optimized LJ force law learned in offline mode. If a
robot collides with an obstacle, its fitness is reduced. Whenever a robot encounters
another robot with higher fitness, it takes the relevant parameters pertaining to the

obstacle-robot interaction of the better performing robot.
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6.4.3 Experimental Results

Figure 6.3 shows the ratio of the number of robots that collided with obstacles versus
the number of robots that survived to reach the goals. The graph indicates that after
only 4 goals, the percentage of robots that collide with obstacles has dropped from
about 38% to less than 8%. Inspection of the obstacle-robot parameters indicates
that the repulsive component increased through the online process of mutation and

the copying of superior force laws.
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Figure 6.3: The ratio of colliding robots versus the number of surviving robots for 60
robots moving through 5 goals with 90 obstacles in between each goal.

It is apparent that robots do not have difficulty learning to avoid obstacles using
the LJ force law. Online learning improves the robot’s ability to adapt in the new
environment and to avoid large obstacles. The slightly mutated force law rules which
are learned offline provided the robots the ability to learn and adapt to the online

environment more quickly.
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6.5 Survivability

Survivability of our robots is extremely important for several reasons. First, if too
many robots die while they are in the field, accomplishing a task becomes difficult.
Second, this could affect the diversity of the swarm. Diversity is important since
the robots share their genetic makeup to improve their performance. Thus, we are
motivated to improve the survivability of the robots in the swarm.

Our first experiment (with collision avoidance) did not attempt to alleviate the
situation where robots are left behind; in fact, only roughly 48% of the original 60
robots reach the final goal (see Figure 6.4, lower line). This is caused by the large
number of cul-de-sacs produced by the large obstacle density. Our second experiment
attempts to alleviate this problem by focusing on the robot-robot interactions. Our
assumption is that the LJ force law needs to provide stronger cohesion, so robots

aren’t left behind.

6.5.1 Methodology

If robots are stuck in cul-de-sacs (i.e. they make no progress towards the goal) and
they sense neighbors, they slightly mutate (1% mutation rate) the robot-robot inter-
action parameters of their force laws. In a situation in which they do not sense the
presence of neighbors and do not progress towards the goal, they rapidly mutate (5 %
mutation rate) their robot-goal interaction causing a “panic behavior”. These rela-
tively large perturbations of the force law allow the robots to escape their motionless

state.



89

6.5.2 Experimental Results

Figure 6.4 shows the results of this second experiment. In comparison with the first
experiment (with survival rates of 48%), the survival rates have increased to 63%.
As a control experiment, we ran our offline approach on this more difficult task.
After five goals, the survival rate is about 78%. Recall that the offline results are
obtained by running an EA with a population size of 100 for 100 generations with
each individual averaged over 50 random instantiations of the environment. As can
be seen, the DAEDALUS approach provides results somewhat inferior to the offline

approach, in real time, while the robots are in the environment.
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Figure 6.4: A comparison of (a) the number of robots that survive when rules are
learned using offline learning, (b) the number of robots that survive when using online
learning (where the focus is on reducing collisions), and (c) the number of robots that
survive when using online learning (and the focus is on survivability).

Although not shown in the graph, it is important to point out that the collision

rates were not affected in the second experiment. Hence, we believe that it is quite
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feasible to combine both aspects in the future. Collision avoidance can be improved
via mutation of the obstacle-robot interaction, while the survival rate can be improved

via mutation of the robot-robot interaction and robot-goal interaction.

6.5.3 Difficulty of Survival

Surviving in one environment with the force laws learned in another environment is
difficult. In the offline simulation the robots did not learn to avoid cul-de-sacs; the
obstacle density did not produce cul-de-sacs, leaving sufficient space for the robots
to navigate through. In the online environment robots are not capable of completely
avoiding cul-de-sacs, so they get stuck behind these cul-de-sacs. Though we are able
to improve the robot survival via mutation, we were unable to achieve the survival of
all of the robots that are initially fielded. Our intention is to maintain the survival

at a healthy level so that our swarm still maintains diversity.

6.6 Summary

Traditional approaches to designing multi-agent systems are offline, and assume the
presence of a global observer. However, this approach will not work in real-time
online systems. This chapter presented a novel approach to solving this problem,
called DAEDALUS, where we showed how concepts from population genetics can
be used with swarms of agents to provide fast online adaptive learning in changing
environments.

Our obstacle avoidance case study is used in this chapter to illustrate the feasibility
of this approach. We tested our robots in a long corridor with five goals placed
among randomly initialized obstacles. We initialized our robots with slightly mutated

copies of the LJ force law optimized using the offline approach. Our first experiment
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attempted to alleviate the increased number of collisions due to the size of obstacles
in the new environment. We presented results showing that robots were capable of
quickly adapting to the new environments (by learning how to avoid obstacles) by
sharing and mutating their force laws.

Though we were able to alleviate the number of collisions, this did not help robot
survival in the new environment, due to a large amount of cul-de-sacs. We presented
our results for collision reduction and online survivability and compared this results

to the results of robots trained in the offline environment.



Chapter 7

Obstructed Perception

7.1 Introduction

When robots are in complex environments and are required to interact with their
neighbors, it is important for the robots to have adequate sensor capabilities. One
possible problem is that even the most sophisticated sensors may not guarantee satis-
factory interactions among the robots due to obstacles blocking the robot’s perception
of the search space. We refer to this scenario as obstructed perception.

This is quite similar to the idea of partially observable domains. In partially
observable domains, robots cannot continually monitor neighbors and model their
world due to the computational burden of such monitoring and modeling. The lack of
such monitoring and modeling leads to increased uncertainty about the state of other
agents (Varakantham, Maheswaran, and Tambe 2004). This partial observability
can introduce uncertainty in agent state information, causing degradation of robot
performance. We refer to this as obstructed perception. Obstructed perception follows
a strict interpretation of sensor failure.

Robots face increasing amounts of sensor obstruction when they act in environ-
ments with large obstacle density. This causes the robots to either observe their
environment partially or not at all. Our obstructed perception method follows the

latter. Another reason for partial observation is limited sensor distance of our robots.
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Sensors with limited distance can reduce the robot’s interactions with other robots.
A decrease in interactions among swarm members causes a reduction in population
diversity making it more difficult for the swarm to improve task efficiency.

We use our DAEDALUS paradigm to improve swarm efficiency in accomplishing
a task with obstructed perception. DAEDALUS is designed to improve swarm per-
formance when the robots are in complex challenging environments. Our objective is
to apply the DAEDALUS paradigm to improve robot survivability and reduce colli-
sions in high density obstacle environments where the robots have their perception

obstructed.

7.2 Learning Dynamic Environments with Obstructed Perception

When a robot can not see another robot, due to the presence of obstacles, we call
this “obstructed perception.” When the robot’s line of sight lies along an edge of
an obstacle, the robots are capable of sensing each other. Surprisingly, this is not
generally modeled in prior work in this area (Balch and Hybinette 2000). Figure 7.1
shows an example scenario of obstructed perception. The larger circle represents an
obstacle, and A and B represent robots. We define minD to be the minimum distance
from the center of the obstacle to the line of sight of robot A and robot B, and r is
the radius of an obstacle. If » > minD, robot A and robot B have their perception
obstructed.

We utilize a parameterized description of a line segment (Haeck 2002) to find the
mainD.

termy = (1 — q) * X, + g x X3) — X,)°

termgo = (((1 —q) * Y, +q*Yp) —YC)2
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D

Figure 7.1: The sensing capability of two robots (A, B) is obstructed by a large
obstacle (C).

minD = \/[terml + terma| (7.1)

where X,, X, are the x positions of robots A and B, Y,, Y, are the y positions of
robots A and B, X, and Y, are the x and y positions of the center of an obstacle, and

¢ is the minimum function that is defined by

((Xc - Xa) * (Xb - Xa) + (Y; - Ya) * (Y;) - }/;1))
(X — Xo)* + (v, - ¥o)?)

7.3 Diversity in Swarms

Diversity refers to the non-uniformity or the variation in species. In Darwin’s theory
of evolution, variation is one of the principle factors that contribute to generate

diverse species. The concept of diversity is fundamental in disciplines such as biology,
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ecology, sociology, and genetics, but there are many issues that remain unresolved
when the concept of diversity is applied in multi-agent and swarm robotics research.
Addressing diversity in a swarm is important; the lack of diversity or a degradation
of diversity leads to fitness stagnation of the swarm, causing reduced performance.

Designing and developing algorithms for diverse populations of a swarm of robots
that perform well in complex environments is challenging. Addressing this issue
is much more difficult if the robots are in complex dynamic environments rather
than computer simulated static environments. Emergent aggregate behavior of a
diverse population of robots is still desirable, and providing behavioral assurance and
measuring the swarm performance is not trivial. Categorizing robots into groups and
measuring their emergent properties is one way to overcome the challenges.

The robots in a swarm can be categorized into groups based on their differences.
We could relate these differences to the robot’s physical structure, algorithmic dif-
ferences, mechanical properties, skills, behavioral aspects and possibly many more.
These types of classifications do not provide a guarantee that a robot belongs to an
exact category due to the complex nature of a swarm that can react and behave dis-
tinctly. Though these classifications of swarms are popular, traditionally swarms have
been classified as either heterogeneous or homogeneous depending on the differences
previously mentioned. Omne of the most important units of classification of robots
into either heterogeneous or homogeneous groups is the metric used for assessing the
swarm performance.

We present a classification of robots in a swarm based on their genetic makeup
(the force law). We classify our robots using their mutation rate. Each robot is
assigned a predefined mutation rate and the robot mutates its copy of the force law
based on the circumstances it faces in the environment. As an example, a robot may

mutate its force law with the assigned mutation rate if the robot is stuck behind a cul-
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de-sac, but at the same time another robot may completely avoid the same cul-de-sac
without any mutation due to the higher quality of its force law. In these scenarios,

our internal performance metric (the robot’s worthiness) decides the robot’s survival.

7.3.1 Homogeneous Swarms

A homogeneous swarm consists of robots with identical software and hardware ca-
pabilities. These capabilities may vary from one swarm system to another swarm
system, but the capabilities among robots within the same swarm remain identical.
According to Li homogeneous systems represent a special case of heterogeneous sys-
tems (Li, Martinoli, and Abu-Mostafa 2003). Depending on the environment and
task constraints, a homogeneous solution may not be a system that achieves the best
results. We have presented our offline results with homogeneous swarms in Chapter 5.
Our homogeneous swarm was capable of producing superior results in an environment
similar to the one that it learned, but given different environmental constraints the

swarm fails to achieve the desired behavior (see Figure 6.4).

7.3.2 Heterogeneous Swarms

A heterogeneous swarm consists of robots that are physically different or have different
software or hardware capabilities. Our robot swarm in the online learning environ-
ment is a heterogeneous swarm. We slightly mutated our LJ force law and created
a heterogeneous swarm in Chapter 6. We use this heterogeneous swarm to test the
feasibility of our DAEDALUS paradigm in a complex dynamic environment. In this
chapter, we apply our DAEDALUS paradigm to online learning with heterogeneous
swarms that are capable of exchanging their mutation rates. We also increased the

task constraints by introducing obstructed perception to our heterogeneous swarm.
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7.4 Swarm Learning Methodology with Obstructed Perception

To deal with obstacle avoidance, we have separate force laws for the robot-robot
interactions, robot-goal interactions, and robot-obstacle interactions. Hence ¢, c,
d, and F,,,, must be optimized for all three forms of interactions, resulting in 12
parameters. Robot-robot and robot-obstacle interactions are local (i.e., robots can
only sense nearby robots and obstacles). The robots are trained with an offline EA in
an offline environment. The environment is 900 x 700 with 90 randomly positioned
obstacles, each of radius 10. This yields about 5% obstacle coverage, which is typical
of most studies in this area (Balch and Hybinette 2000). The robots move with
maximum velocity 20 units/sec. The EA does not have great difficulty producing an
optimized LJ force law that avoids obstacles while allowing all robots to reach the
goal.

However, the online environment is far more difficult. The online 2D world is 1600
x 950, and each of the 90 obstacles has a radius of 30 compared to the offline obstacle
radius of 10. Therefore, more than 16% of the online environment is covered with the
obstacles, tripling the obstacle density. We also increase the maximum velocity of
the robots to 30 units/sec from 20 units/sec, making the robots move 1.5 times faster
than in the offline environment. Obstructed perception occurs in both the offline and
online environments.

For the online environment, each robot of the swarm contains a slightly mutated
copy of the optimized LJ force law rule set found with offline learning. There are
five goals to achieve in a long corridor, and between each randomly positioned goal is
a different obstacle course with 90 randomly positioned obstacles. The LJ force law
learned in offline mode is not sufficient for this more difficult environment; it produces

robots that never reach the goal (due to the high percentage of obstacles).
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Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to the
next goal, but robots that collide with obstacles and make it to the goal are allowed to
proceed to the next goal. We assume that damaged robots can be repaired once they
reach a goal. Although noise in dynamic environments is not specifically modeled
in our simulation, it has been shown with actual robots that the physicomimetics
framework is robust with modest amounts of noise (Spears, Gordon-Spears, Hamann,
and Heil 2004). In fact, noise can actually improve performance by overcoming local
optima in the behavior space (Martinson and Payton 2005; Spears and Gordon 1999).

In Chapters 5 and 6, we have shown that the robots easily learned to avoid colliding
with obstacles, so our focus in this chapter is on the survivability of the robots (i.e. the
number of robots that reach a goal). When the robots are left behind in cul-de-sacs,
the number of robots that survive to reach a goal is lowered, causing the cohesion
of the formation to be reduced. We utilized two different methods to improve the

survivability:

e if robot; is not moving (due to an obstacle) and robot; has no moving neigh-
bors, then robot; mutates it’s own robot-goal interactions. This mimics “panic

behavior” seen in animals.

e if robot; is not moving (due to an obstacle in the way) and a neighboring robot;

is moving, then robot; receives robot;’s robot-robot interactions.
We addressed the first method in Chapter 6 and presented our results. We focus on
the second method in this chapter.
7.4.1 Experimental Results

We compared DAEDALUS to three control studies. In the first control study, we

train the robots with an offline EA on small obstacles, and then test them again on
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small obstacles to verify their performance. In the second control study, we train the
robots with an offline EA on large obstacles and test them on large obstacles. The
purpose of this control study is to clarify the difficulty of the task. Finally, in the
third control study, we train the robots with an offline EA on small obstacles and test
them on large obstacles. The purpose of this study was to see how well the knowledge
learned while avoiding small obstacles transferred to large obstacles. All results are
averaged over 100 runs.

Figure 7.2 shows the results. The y-axis gives the number of robots that survived
to reach the goal at each stage for the four different experiments. The top performance
curve is for the first control study. Note that learning with small obstacles in offline
mode is not difficult, and the robots perform very well in the online environment. This
is due to the fact that the small obstacles make the environment less dense providing
the robots sufficient space to navigate. Out of 60 initial robots released in the online
environment, 93.3% survived to reach the last goal. With such small obstacles (which
is the maximum density examined in the related literature), obstructed perception is
not an important issue.

In the results presented in Chapter 6, robots that learned without obstructed per-
ception on larger obstacles had a reasonably high survival rate (78%). The bottom
(dashed) performance curve shows the effect of obstructed perception (the second
control study). Learning with large obstacles in offline mode with obstructed percep-
tion is very difficult, and the test results show that out of 60 robots released initially
into the online environment only 35% (21 robots) survived to reach the last goal. This
is due to the fact that the environments with larger obstacles create large numbers
of cul-de-sacs that obstruct perception.

The third control study (see“NO DAEDALUS(small-large)”), where offline train-

ing occurs with small obstacles and testing occurs with large obstacles, the results are
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surprisingly good. Despite an initial drop in performance, performance at the fifth
goal is quite acceptable (out of the initial 60 robots, 41.6% (25 robots) survived to
reach the final goal). This is a 6.6% improvement over the robots that were trained
on larger obstacles. These results run counter to accepted wisdom, which states that
it is best to train on the hardest environments that you will encounter. In fact, this
example demonstrates that training on simpler problems and applying the knowledge
gained to harder problems can potentially provide superior results. Why is this so?
As with developmental psychology, one does not train children on hard problems im-
mediately, instead, we train them on easier problems first, in the hopes that they
will learn the “basics” (which are important building blocks for solving other, more

difficult, problems) more quickly.

Survival of 60 Robots in Online Environment with Obstructed Perception
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Figure 7.2: Four different experiments of number of robots surviving. All robots are
trained with obstructed perception and tested with and without DAEDALUS. The
results are averaged over 100 independent runs.
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If we extend the developmental psychology analogy further, we note that we en-
courage children to experiment and modify their behavior, based on changes in the
environment. Furthermore, they share the lessons learned. This is precisely what
the DAEDALUS system does. The final performance curve in Figure 7.2 shows the
results. With an initial 60 robots, 61.6% or 37 robots survived to reach the last goal.
This is a 26.6% improvement over the robots that learned in an environment with
the larger obstacles, and a 20% improvement over the robots that learned with small
obstacles and tested with the larger obstacles without DAEDALUS. These prelim-
inary results are very promising. Although encouraging the robots (or children) to
explore and experiment does provide an early drop-off in performance (compared to
the “NO DAEDALUS (large-large)” curve), the results after three goals are supe-
rior. This is a classic example of “exploration” vs “exploitation”. Pure exploitation
of learned knowledge is good up to a point, but will eventually fail as the prob-
lems become more difficult. Exploration provides the key to adapt to these changing

environments. DAEDALUS provides just this form of exploration.

7.5 Homogeneous Swarm Learning - Experimental Results

For the DAEDALUS performance curve given above, all robots had the same mutation
rate, which was 5%. Hence, each robot had the same rate of exploration. Although
the rules for each robot may differ, their mutations rates are identical, and we refer to
this system as “Homogeneous DAEDALUS”. However, there are numerous problems
with this approach. First, the results may depend quite heavily on choosing the
correct mutation rate. How is this mutation rate to be chosen? Second, the best
mutation rate may also depend on the environment, and should potentially change

as the environment changes. How is this to be accomplished?
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Since the mutation rate may have a major effect on performance, we decided to
explore this effect by conducting several experiments with different mutation rates.
Figure 7.3 shows five independent experiments of Homogeneous DAEDALUS. Five
different mutation rates were used: 1%, 3%, 5%, 7%, and 9%. The results are quite
striking. Of the five different mutation rates, only 5% and 7% did well (with about
35 robots surviving to the last goal). Recall that the DAEDALUS performance curve
shown in Figure 7.2 resulted from an arbitrarily chosen mutation rate of 5%. As it
turns out, we were extremely fortunate in our design decision. For example, with
mutation rates of 1%, 3%, and 9%, at most 23 robots survive to reach the final goal.
The performance curve for the 9% mutation rate is especially interesting. Although
promising at first, it appears as if the mutation rate is so high that it eventually
causes an extremely deleterious mutation to appear. Mutation rates of 1% and 3%

are too low to cope with the changed environment.

7.6 Heterogeneous Swarm Learning - Experimental Results

In an attempt to address the problem of choosing the correct mutation rate, we di-
vided the robots into five groups of equal size. Each group of 12 robots was assigned
a mutation rate of 1%, 3%, 5%, 7%, and 9%, respectively. This mimics the behavior
of children that have different “comfort zones” in their rate of exploration. Since
different robots have different mutation rates, we refer to this system as “Hetero-
geneous DAEDALUS”. Figure 7.4 shows the results, in comparison with the three
control studies shown in Figure 7.2. The label “Het. DAEDALUS(small-large)” shows
the survivability of robots with pre-assigned mutation rates. Out of the initial 60
robots, 29 or 48% robots survived to reach the final goal. Although this is higher

than our second and third control studies, it did not produce results as good as the
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Survival of 60 Robots for Different Mutation Rates with DAEDALUS
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Figure 7.3: Five different mutation experiments of robots surviving. All robots are
trained with obstructed perception and tested with DAEDALUS. The results are
averaged over 100 independent runs.

results achieved with Homogeneous DAEDALUS using a 5% mutation rate (as shown
in Figure 7.3). In fact, the result at the final goal is essentially identical to the average

of the five performance curves shown in Figure 7.3.

7.6.1 Extended Heterogeneous DAEDALUS Results

In an attempt to improve performance, we again borrowed from the analogy of a
“swarm” of children learning some task. Not only do they share useful information
as to the rules they might use, but they also share meta-information as to the level
of exploration that is actually safe! Very bold children might encourage their more
timid comrades to explore more than they would initially. On the other hand, if a
very bold child has an accident, the rest of the children will become more timid. In

“Extended Heterogeneous DAEDALUS”, five groups of children are again initialized
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Figure 7.4: Number of robots surviving with predefined mutation rates. The mutation
rates are not exchanged. All robots are trained with obstructed perception and tested
with or without DAEDALUS. The results are averaged over 100 independent runs.

with mutation rates of 1%, 3%, 5%, 7%, and 9%. However, in this situation, if a robot
receives the rules from a neighbor (which, again, occurs if that robot is in trouble), it
also receives the neighbor’s mutation rate. In this implementation, children in trouble
not only change their rules, but their mutation rate. Figure 7.5 shows the results of
this study. The curve labeled with “Ex.Het. DAEDALUS(small-large)” refers to the
survivability of robots with pre-assigned mutation rates that also allows the robots
to receive a neighbor’s mutation rate, if the robot receives the neighbor’s rules. The
behavior is quite good. On average, 34 robots survive to reach the final goal, which is
very close to the optimum value of 37 found by the best Homogeneous DAEDALUS

experiment.
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Figure 7.5: Number of robots surviving with predefined mutation rates. The mutation
rates are exchanged. All robots are trained with obstructed perception and tested
with or without DAEDALUS. The results are averaged over 100 independent runs.

7.7 Effect of Mutation in Swarm Learning

We explored the effect of heterogeneous swarms in an online environment and com-
pared our results with the offline homogeneous swarms. We maintained the diversity
in our heterogeneous swarm by allowing robots to exchange their predefined mutation
rates. The robots learned to avoid cul-de-sacs in the online environment and maintain
the diversity of the population. Table 7.1 shows the mutation rates of robots that
survive to reach a goal.

At the beginning, there are five groups of robots. They are initialized with muta-
tion rates of 1%, 3%, 5%, 7%, and 9%. The robots with 1% and 3% mutation rates
had a more difficult time surviving compared to the robots with other three mutation

rates. Thirty seven robots survived to reach the fifth goal, and clearly the 5% and
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Mutation Rate
robots survive | 1% | 3% | 5% | 7% | 9%
60-start 12 12 | 12 | 12 | 12
54-goal 1 10 | 10 | 11 | 12 | 11
47-goal 2 9 8 | 11 | 10 | 9
42-goal 3 6 7 |11 | 10 | 8
39-goal 4 6 6 | 10 | 9 8
37-goal 5 5 6 |10 | 9 7

Table 7.1: The number of robots that survive to reach a goal and their mutation
rates.

the 7% mutation rates performed better than the other three mutation rates. With
1% mutation, seven robots did not reach the fifth goal, and with 9% mutation, five
robots did not reach the fifth goal. Notice that there are still robots with all five
mutation rates surviving in the environment. This still maintains the diversity of the

swarinl.

7.8 Summary

This chapter addressed the important issue of “obstructed perception” in learning
behaviors for swarms of robots that must avoid obstacles while reaching a goal. This
issue has been largely absent from the literature. Our obstacle density is also three
times higher than the norm, making obstacle avoidance a far more difficult task.
Since obstructed perception makes the task far more difficult, DAEDALUS had to be
extended. Our first extension was to allow different robots to have different rates of
exploration, which affects the rate at which they change their behavioral rules. The
second extension allowed the robots to also share their rates of mutation, enabling
robots to find the right balance between exploration and exploitation. Results of the

extended system were almost as good as the best results we were able to achieve when
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the exploration rates were controlled by hand. In summary, this chapter introduced a
framework that allows swarms of robots to not only learn and share behavioral rules
in changing environments (in real time) and but to also learn the proper amount of

behavioral exploration that is appropriate.



Chapter 8

Hardware Implementation

8.1 Introduction

In previous chapters, we presented our approach to designing and implementing robot
swarms that perform the obstacle avoidance task in simulation. In this chapter, we
present our approach to designing and implementing robotic hardware and algorithms
for formation control and the obstacle avoidance task.

While most of our hardware modules are designed and tested in-house, we use
several off-the-shelf hardware components. Our obstacle avoidance hardware module
(OAM) is built in-house at the UW-DRL, and we use off-the-shelf Freescale 68HCS12
microprocessors as the central processing unit. We also design and test a physics-
based control algorithm for robot navigation and obstacle avoidance. We call this
algorithm AP-lite. We use the UW-DRL Maxelbot robot as our robotic platform?.
Maxelbots are fitted with hardware and algorithms for robot localization.

Spears et al. presented a trilateration technique for robot localization (Spears,
Hamann, Maxim, Kunkel, Heil, Zarzhitsky, Spears, and Karlsson 2006). In 2D tri-
lateration, the locations of three base points are known as well as the distances from
each of these three base points to the object to be localized. Looked at visually, 2D

trilateration involves finding the location where three circles intersect. Thus, to locate

1See http://www.cs.uwyo.edu/~wspears/maxelbot/
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a remote robot using 2D trilateration the sensing robot must know the locations of
three points in its own coordinate system and be able to measure the distances from
these three points to the remote robot. We make use of this trilateration technol-
ogy and extend this work to the obstacle avoidance task using our AP-lite control
algorithm.

Next, we present our hardware modules and the issues related with the hardware.
Then, we present our AP-lite control algorithm and provide an analysis of our forma-
tion control and obstacle avoidance results in an outdoor setting. The work presented

in this chapter is preliminary and research is ongoing.

8.2 Hardware Considerations

There are numerous issues involved with designing obstacle avoiding robots. One is
to decide the type of hardware components to use, and the other is to decide the
software needed to run the hardware modules.

Deciding the type of hardware to be used is not an easy task due to the availability
of different hardware components. Since the trilateration technology is for localizing
other robots and is not capable of localizing obstacles, we designed a new hardware
module that takes obstacles into consideration. We designed a PIC micro-controller
based hardware module that provides the capability of processing eight sensors. The
main reasons to choose the PIC micro-controller includes its low cost, availability of
support material, and the capability to program its flash memory.

We decided to use four SHARP GP2D12 IR (Infrared) proximity sensors on the
front of a Maxelbot for obstacle avoidance. The decision to choose IR sensors is
mainly based on the availability, cost and our prior experience with these sensors.

Our previous experience in designing, implementing and testing IR sensors on a prior
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generation of Maxelbots aided us tremendously. Integration of the sensor module to
function with all the other hardware modules on the Maxelbots is another challenging
issue.

One of the most challenging problems of integrating hardware modules is the
communication between the modules that control various robotic functions. Paul M.
Maxim at the UW-DRL contributed tremendously in designing, implementing and

testing algorithms for hardware communication using an /2C' data bus.

8.3 Hardware Configuration

We designed one Maxelbot robot that is capable of avoiding obstacles. This particular
Maxelbot consists of two MiniDRAGON boards? powered by a Freescale 68HCS12
microprocessor and a PIC16F7x7 processor by Microchip Technology Inc. as our

OAM. We use SHARP GP2D12F6X IR sensors as our proximity sensors.

8.3.1 Maxelbot Robots

Our UW-DRL “Maxelbot” (named after the two graduate students who designed
and built the robot) is modular. The platform is an MMP5, made by The Machine
Lab3. There are two MiniDRAGONSs on the Maxelbot, one for motor control and
another for trilateration. They communicate via an I2C bus and this allows us to
plug in new peripherals as needed. Figure 8.1 shows the hardware modules of the
Maxelbot robot. The motor control MiniDRAGON consists of algorithms that drives
the motors. It also has the capability of monitoring the proximity sensors. If the
sensor suite is connected to the motor control MiniDRAGON, it allows the control

algorithm to take the proximity sensor readings into consideration. The trilateration

2Produced by Wytec (http://www.evbplus.com/)
3See http://www.themachinelab.com/MMP-5.html
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module is shown at the right of the diagram. This module controls the RF and
acoustic components of trilateration. Additional modules have been built for digital
compasses, thermometers, and chemical plume tracing (Spears, Hamann, Maxim,

Kunkel, Heil, Zarzhitsky, Spears, and Karlsson 2006).

RF and acoustic sensors

MiniDRAGON for
trilateration,
provides robot
coordinates

MiniDRAGON for 12c
motor control, o
executes APdite

L

OAM
AtoD conversion

bt

IR sensors

Figure 8.1: Hardware modules of Maxelbot robot.

8.3.2 Sensor Characteristics

We use four SHARP IR proximity sensors mounted on the front of a Maxelbot for
the obstacle avoidance task. The SHARP GP2D12 IR sensor is a distance measuring
sensor that outputs an analog voltage proportional to the measured distance. Its
effective range is normally 10cm to 80cm. The GP2D12 sensor continuously measures

the distance to an object based on the voltage reading and reports this distance as an
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analog voltage. The maximum output voltage of this sensor is 2.8 volts. This sensor
uses triangulation to detect the distance*. Due to this triangulation method, the
sensor output is non-linear with respect to the distance being measured. Figure 8.2

shows the typical output of these sensors.
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Figure 8.2: GP2D12 sensor output voltage with distance to objects.

4See http://www.acroname.com/robotics/info/articles /sharp/sharp.html
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float ConvertSensorReadingToInches(rawSensorReading)
float temp;
temp = (6787.0/(rawSensorReading - 3.0)) - 4.0;
return (temp/2.54);

Figure 8.3: Function to convert raw sensor readings to inches.

The GP2D12 IR sensors are provided with 5 volts of input voltage and the analog
to digital (AtoD) converter converts the output voltage to a digital signal based on
the raw sensor reading. These raw sensor readings must be converted to distances
in inches so that these distances can be used in our AP-lite control algorithm. We
make use of a conversion function® to linearize the digital sensor reading as shown in

Figure 8.3.

8.3.3 Obstacle Avoidance Module

The OAM consists of four GP2D12 IR sensors and the AtoD converter. The analog
output of the sensor is converted to a digital signal, and sent via the I?C data bus to
the motor control MiniDRAGON. We provided sensors with 5 volts of input voltage
and the output is an analog signal. The AtoD module converts the output voltage to
a digital signal that consists of a raw sensor reading between a value of 0 and approx-
imately 550 (the input voltage can be inconsistent), with 0 being the nonexistence of
an object in front of the sensor and 550 being an object closest to the sensor. Once
all sensor readings are available, the OAM stores the sensor reading in an array so
that it can be used by the motor control MiniDRAGON.

The OAM communicates the sensor readings to the motor control module upon

request. From the I?C data bus point of view, this configuration has a master-slave

°See http://www.acroname.com/robotics/info/articles/irlinear /irlinear.html
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relationship. The OAM is considered to be the slave and the motor control module
that requests the information from the OAM is considered to be the master. This
method of communication is more effective because all the hardware modules require
I?C data bus usage. If this master-slave communication method does not exist, there
is a possibility that one module could hold on to the I2C data bus without letting
other modules use it, causing a total communication failure among modules.

A top view of the Maxelbot robot with IR sensors and the OAM is shown in

Figure 8.4.

‘ SHARP IR sensors ‘

MiniDRAGON
for
trilateration

MiniDRAGON
for
motor control

‘ Acoustic transceivers ‘ ‘ RF module ‘

Figure 8.4: Top view of a Maxelbot robot with the OAM and MiniDRAGONSs for
trilateration and motor control.

8.4 Experimental Results

Numerous task-driven formations have been successfully performed with the Maxel-

bots indoors using trilateration. For details, see (Spears, Hamann, Maxim, Kunkel,
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Heil, Zarzhitsky, Spears, and Karlsson 2006). One of the drawbacks of trilateration
is that it does not allow obstacle avoidance. The OAM with trilateration allows us
to maintain robot formations and to avoid obstacles.

This section presents three experiments that aid in identifying the quality of the
AP-lite algorithm. Two of our experiments focus on formation control and the other
experiment focuses on AP-lite obstacle avoidance with the OAM. All three experi-

ments are conducted in an outdoor setting.

8.4.1 Control Algorithm: AP-lite

Our control algorithm “AP-lite” follows the physicomimetics approach. The physi-
comimetics framework allows for self-organizing swarms, while AP-lite is only capa-
ble of maintaining a formation. AP-lite is specifically designed as a leader-follower
algorithm; only the leader broadcasts a signal, rather than all robots as in the physi-
comimetics approach. The advantage of AP-lite over physicomimetics is that AP-lite
provides us with faster robot speed, and further, we can use theory to set the param-
eter settings. Since we are at the initial stages of our research we decided to conduct
all of the experiments with one leader and two follower Maxelbots. AP-lite computes
the amount of power required for the left and right motors based on the forces acting
upon the robot. Here, we present our AP-lite algorithm for obstacle avoidance with
both repulsive and attractive forces acting on the robot. We use Hooke’s law as our
force law. Hooke’s law allows us to model robot interactions similar to the force laws
we presented earlier.

The attractive goal force is a global component that is always active; this drives
the robot forward with an equal amount of power to both motors. When the robot
reaches an obstacle, AP-lite computes the repulsive forces acting on the robot, and

change the power supply to the motors. If the robot senses an obstacle from the right
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void ap-lite()
float v, vx, vy, r, F, kmid, kside, Fx, Fy, delta.vx, deltavy
float theta, thetanew, delta, w, FR, STEP, mass, alpha
int power_left, power_right
int RANGE = 30 // reactive distance to an obstacle
int MAX_SPEED = 70 // maximum power supply to motors
STEP = mass = 1.0 // step size and the mass of the robot
kmid = 5.0 // Hooke’s law constant for two middle sensors
kside = 4.0 // Hooke’s law constant two out side sensors
FR = 0.5 // friction
alpha = 1.0 // decides the amount to turn
Fx = 100.0 // attractive goal force in x direction
Fy = 0.0 // robot do not move side-way
v = current_velocity // initial value is at 70%
vx = FR * v // velocity drops with friction
vy = 0 // No side-way velocity
for (all four sensors)
if (sensor.reading > 30) // filter out low readings
r = RANGE - ConvertSensorReadingToInches(sensors.reading)
if (r < 0) r = 0 // no obstacles seen
theta = virtual_sensor_angle_in_radians
if ( sensor._l or sensor.2)
F = kmid * r // compute force from the two middle sensors
else
F = kside * r // compute force from the two out side sensors

Fx = Fx - (F * cos(theta)) // Repulsive x component
Fy = Fy - (F * sin(theta)) // repulsive y component
endif

endfor

(i.e. right-most sensor, S0, (see Figure 8.7) reads a high value), AP-lite reacts to this

repulsion by supplying less power to the left motor. If the robot senses an obstacle

from the left (i.e. right-most sensor, S3, (see Figure 8.7) reads a high value), AP-lite

reacts to this repulsion by supplying less power to the right motor. If both sensors

in the middle, S1 and S2, are reading high values, the repulsive forces from both

sensors counteract the goal force, causing the robot to come to a halt. Our robots

are nonholonomic and they always move in the forward direction.

The Maxelbot’s turn is decided by the turn_function (see Figure 8.6). Since our
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deltavx = STEP * Fx / mass // change in velocity in x direction
deltavy = STEP * Fy / mass // change in velocity in y direction
vx = vx + deltavx // velocity in x direction
vy = vy + deltawvy // velocity in y direction
v = sqrt(vx * vx + vy * vy) // current velocity
delta = atan2(deltavy, deltawvx) // direction of change in velocity
current velocity = v // reset current velocity
w = turn_function(delta) // angle of the robot turn
thetamnew = atan2(vy, vx) // robot moves in first or second quadrant
if ((-w/2.0 <= thetanew) and (thetanew <= 7/2.0))
power right = (int) (v + v * alpha * w) // power to right motor
power_left = (int) (v - v * alpha * w) // power to left motor
// proportionally cap the motor power
if (power_right > MAX_SPEED or dcl > MAX_SPEED)
if (power_right >= power_left)
power_left = MAX_SPEED * power_left / power right
power right = MAX_SPEED
else
power right = MAX_SPEED * power right / power left
power_left = MAX_SPEED
endif
endif
endif
if (dcr >= 0)
move forward right motor with power_right
endif
if (dcl >= 0)
move forward left motor with power_left
endif
end ap-lite

Figure 8.5: Pseudocode of the AP-lite.
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float turn_function (float angle)
float angle radians = angle
// robot moving to the second quadrant
if ((n/2.0 < angle) and (angle <= 7))
angle radians = ™ - angle
endif // robot moving to the third quadrant
if ((-m < angle) and (angle < -7/2.0))
angle radians = -7 - angle // only used in backward move
endif
return angle radians
end turn_function

Figure 8.6: Pseudocode of the turn function.

robots currently do not move backward, a robot moving into the second or third

quadrant is not relevant here. The turn_function returns the turning angle in radians.

The virtual angles of the positioning of the four IR sensors are shown in Figure

8.7. These sensor angles allow us to effectively model the robot’s stopping behavior

when all sensors detect an obstacle in front of the robot.

virtual
angle

Robot Center

Figure 8.7: Positioning of sensors on the front of a Maxelbot.
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8.4.2 Methodology

For all the experiments, the Maxelbots are run outside in a region in the center of the
University of Wyoming campus called “Prexy’s Pasture” (see Figure 1.3) at®. Prexy’s
consists mostly of grass, of average height 8 cm (3”), interspersed with concrete
sidewalks, trees, rocks, leaves, and other debris. The grass hits the bottom of the
Maxelbot. Although generally flat, the ground slope can change rapidly (within 61
cm or 2'), by up to 20°, at boundaries. All the results of the formation tests are
averaged over ten independent runs. All the experiments are conducted with a leader

and two follower Maxelbots. The first two experiments are,

e triangular formation: followers with AP-lite and leader remotely controlled

(RC).
e linear formation: followers with AP-lite and leader remotely controlled (RC).

The last experiment tests the reliability of the OAM working with the AP-lite.

e the OAM effect on AP-lite when the Maxelbot is navigating in an outdoor

terrain with obstacles.

Detailed discussions of the experiments are given in the next two sections.

8.4.3 Formation Control

To test the quality of our AP-lite algorithm, we conducted two experiments. The
focus of the first two experiments is to test AP-lite accuracy with two different robot
formations: triangular and linear. In both of these experiments, the leader is remotely

controlled while the followers control their navigation using the AP-lite algorithm.

Shttp://www.laramie.willshireltd.com/PrexysPasture.html
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The third experiment measures the performance of the OAM module working with
the AP-lite. In this experiment, the leader moves in the forward direction and avoid
obstacles; all three Maxelbots use the AP-lite algorithm to navigate. The leader reacts
to both attractive and repulsive forces and the followers only react to the attractive
force of the leader. In all experiments, the followers self-calibrate their initial x and
y position relative to the leader at the beginning of every run. The leader has a
maximum power (speed) of 70% and the followers move with greater than 70% of
power.

In the first experiment, the followers were positioned in a triangular formation
at certain positions as shown in Figure 8.8. The leader is controlled with the RC
and the followers are controlled with the AP-lite but without the OAM. Dark arrows
represent the initial robot headings. The initial positions shown are self-calibrated

by the followers.

t

Leader
Y =21.42" RC Y =-19.26"
CF

NO

OAM
X =36.01" X =3577"
Follower Follpwer
AP-lite AP-lite

Figure 8.8: Three Maxelbots in triangular formation; distances shown are initial x
and y positioning.

Figure 8.9 shows the results of two Maxelbots following the leader in triangular
formation. It is clear that the followers maintain their position consistently using
AP-lite. This also illustrates the accuracy of the trilateration technique. The robot

on the left of the formation oscillates slightly more on its Y-axis more than the robot



121

on the right. We believe this is a hardware issue rather than AP-lite.

X,Y Positions of Two Follwers in Triangular Formation while in Motion
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Figure 8.9: Change in position of two follower Maxelbots in triangular formation.

In the second experiment, the followers were positioned in a linear formation at
certain positions as shown in Figure 8.10. Once again, the leader is controlled with
the RC and the followers are controlled with AP-lite.

Figure 8.11 shows the results of two Maxelbots following the leader in linear
formation. The mean error of follower two’s real X position is larger than the mean
error of follower one’s real X position. Our investigation showed that follower two
is the same robot that we used as the left robot in the triangular formation. This
indicates that follower two’s hardware problem is potentially causing this change in
behavior. Also, another possible scenario is the lack of trilateration signal strength
from the leader due to distance.

The bottom two curves of the graph represent the followers real and ideal Y

positions, and these two curves are overlapped in our graph. Both follower maintain
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Figure 8.10: Three Maxelbots in linear formation; distances shown are initial x and
y positioning.

their Y position extremely well.

8.4.4 Obstacle Avoidance

The third and last experiment tests the quality of our AP-lite algorithm working
together with OAM module. Currently only the leader Maxelbot carries the the
OAM. The resulting figures from Figure 8.12 through 8.14 show the corresponding
relationship between the raw sensor readings and the power to the left and right
motors. For all the graphs, the X-axis represents the time (the number of data
points collected over a period of 15 minutes in an outdoor setting), and the Y-axis
shows the raw sensor reading and the power to the motors. In all three graphs, a
constant value of 200 is added to each of the raw sensor readings. Thus, a raw sensor
value of 0 corresponds to a value of 200. This is done to enhance the visual effect of
the graphs.

Figure 8.12 shows the correlation between the right-most sensor, S0, and the
power to the left motor. The graph shows clear correlation between the repulsion

that occurs from the right side of the robot and the robot turning left. Clearly,
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X,Y Positions of Two Follwers in Linear Formation while in Motion
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Figure 8.11: Change in position of two follower Maxelbots in linear formation.

visible flat segments of the curve at value 70 represent the robot running forward at
70% of power with no repulsion acting on the robot from any of the sensors. The flat
segments of the bottom curve, closest to value 0, represent the left motor power at
0% causing the wheels on the left side of the robot to be stopped.

Figure 8.13 shows the correlation between the left-most sensor, S3, and the power
to the right motor. Again, the graph shows a clear correlation between the repulsion
that occurs from the left side of the robot and the robot turning right. Again, the
clearly visible flat segments of the curve, at value 70, represent the robot running
forward at 70% of power with no repulsion detected from any of the sensors. The flat
segments of the bottom curve, closest to value 0, represent the right motor power at
0% causing the wheels on the right side of the robot to be stopped.

Figure 8.14 shows the correlation between the two middle sensors S1, S2, and the

power to right and left motors. Again, as a visual enhancement, we show the average
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of the two middle sensor reading and the average of the power to the two motors.
When both middle sensors detect obstacles, the repulsive forces acting on the
robot are greater than the attractive force pulling it forward. This causes the robot’s
net force to be negative. Since our robot does not move sideways and we deliberately
avoided the backward movement of the robot’s motors, the robot comes to a stop
when there is a negative net force acting on it. Once again, it is clear that AP-lite

reacts well to both attractive and repulsive forces acting on the robot.

Maxelbot Stopping Behavior - Both Middle Sensors Detect an QObstacle
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Figure 8.14: Correlation between the two middle sensors, S1 and S2, and the power
to the left and right motors.

8.4.5 Further Analysis of Data

Figures 8.15 through 8.17 show the corresponding relationship between the distance
to obstacles and the power to robot motors using scatter plots. We use scatter plots
because they provide a broader picture of the data. For all the graphs, the X-axis

represents the distance to obstacles in inches and the Y-axis represents the power
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to the motor(s). The distance to the obstacles is measured using the function in
Figure 8.3. Again, all the experiments are conducted in an outdoor setting. If the
robot is less than 30 inches away from an obstacle, the robot feels the repulsive forces
from that obstacle. Beyond 30 inches, obstacles have no effect on the robot. The
closer the robot gets to an obstacle, the higher the repulsive force it feels. When the
robot’s repulsive forces overcome the attractive goal force, the robot comes to a stop.

Figure 8.15 shows the distance to an obstacle on the right of the robot and the
power to the left motor. There are five different scenarios visible in this scatter plot.
First, the robot’s left motor moves at a maximum constant speed of 70 when there
are no obstacles repulsing the robot from the right. Second, the robot’s left motor
power decreases when the robot detects an obstacle from its right at a distance less
then 30 inches. Third, the robot is even closer to the obstacle causing the middle-left
sensor to detect the obstacle and this further decreases the power to the left motor.
Fourth, the robot’s left motor moves at the maximum speed even though the robot is
detecting an obstacle on its right. This is because the robot reacts to a closer obstacle
on the left before it reacts to the obstacle on the right. Fifth, the robot’s left motor
is stopped when there are no obstacles detected on the right. This is because the
robot’s two middle sensors detect an obstacle in front of the robot.

Figure 8.16 shows the distance to an obstacle on the left of the robot and the
power to the right motor. The scenario the robot faces is symmetric to the scenario
seen in the previous (see Figure 8.15) graph. Interestingly, the robot detects less
obstacles on its left compared to its right. This is caused by the difference in obstacle
density along the robot’s path.

Figure 8.17 shows the average (the distances measured by the two middle sensors
are averaged) distance to an obstacle in front of the robot and the average power to

the left and right motors. The scatter plot clearly shows a linear correlation of the



Power to Left Motor

Figure 8.15:
motor.

Power to Right Motor

Figure 8.16:
motor.

80 q

127

Maxelbot Turning Left - Obstacle on the Right

Ras o BB 2R LK L R IR R R K R R B 2 :

+ T T + 1

40 a0 a0 70 a0 a0 100

Distance to Obstacle on the Right in inches

Correlation between the right-most sensor, S0, and the power to the left

a0 q

Maxelbot Turning Right - Obstacle on the Left

Ea s B o B B R R KR N X S I R

Distance to Obstacle on the Left in inches

Correlation between the left-most sensor, S3, and the power to the right



128

motor power to the left and right motors with the distance to an obstacle in front
of the robot. The points where the distance is greater than 30 while the power is

reduced correspond to situations where there are obstacles to the left or right.

Maxelbot Stopping Behavior - Both Middle Sensors Detect an

Obstacle
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Figure 8.17: Correlation between the two middle sensors, S1 and S2, and the power
to the left and right motors.

8.5 Summary

In this chapter, we presented our work of designing and implementing hardware and
software for obstacle avoidance. We introduced our robot platforms, the OAM and a
novel control algorithm, AP-lite, for robot control. AP-lite is reactive to an attractive
force from a virtual goal and repulsive to forces from obstacles. We implemented our
OAM using SHARP IR sensors and a Maxelbot robot. We presented three different
leader-follower experiments. The first two experiments tested the quality of AP-lite

using two followers in two different formations: triangular and linear. The third ex-
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periment tested the quality of AP-lite using the leader with the OAM. In addition, we
have presented an analysis of our results using scatter plots. Our results demonstrate

the accuracy and quality of both our hardware and software.



Chapter 9

Conclusion

9.1 Accomplishments

Traditionally, accomplishing complex robotics tasks involves an expensive and pos-
sibly remotely controlled robot. This traditional approach overwhelms our robotic
resources with an ever increasing complexity of task requirements and recent world
events. The traditional approaches do not support complete autonomy nor the dis-
tributed computing capability of the robots. The robots depend on the human op-
erations. The performance feedback becomes vital, and delay or perturbation of the
feedback loop due to environmental constraints may jeopardize the task. The lack
of a global observer could be fatal to the mission’s success. Due to these disadvan-
tages in traditional approaches, we focus on designing rapidly deployable, scalable,
adaptive, cost-effective, and robust swarms. Our objective is to develop autonomous
distributed mobile sensing robot swarms. Our objective is to provide a scientific, yet
practical, approach to the design and analysis of swarm robotic systems.

Our specific objective within the context of this thesis is to address the related
issues and concerns of a swarm of robots that reaches a goal while avoiding obsta-
cles and maintaining a cohesive formation, even when the environment changes. We
provide an empirical analysis of obstacle avoiding robot swarms that extensively con-

tributes to our understanding of the general swarm robotic issues.

130
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We have successfully designed and implemented an obstacle avoiding robot swarm
in simulation as well as using physical robots. All our algorithms are rapidly deploy-
able, scalable, adaptive, cost-effective, and robust. Our robots have limited sensor
input but the aggregate behavior of the collective emerges through the interactions
among swarm members. Our algorithms are distributed and provide computational

efficiency and fault-tolerance.

9.2 Contributions

The work in this thesis makes many contributions to several areas of swarm robotics

research.

e Improved performance in obstacle avoidance:

— applied a new force law for robot control to improve performance. The
thesis presents a novel extension to the physicomimetics framework, with

the use of a generalized Lennard-Jones force law.

— provided novel objective performance metrics for obstacle avoiding swarms.
The metric includes the measurement of the number of robots that collide
with obstacles, their connectivity, the number of robots that reach the

goal, and the time taken by at least 80% of robots to reach the goal.

— improved scalability of the swarm in obstacle avoidance. We provide me-
thodical empirical analysis showing the scalability ranging from 20 to 100

robots, and from 20 to 100 obstacles.

— improved performance of obstacle avoidance with obstructed perception.

We address the important issue of “obstructed perception” in learning
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behaviors for swarms of robots that must avoid obstacles while reaching a

goal.

e Invented a novel real-time learning algorithm (DAEDALUS):

— demonstrated that a swarm can improve performance by mutating and
exchanging force laws. We invented a novel real-time learning algorithm.
We show how concepts from population genetics can be used with swarms

of agents to provide fast online adaptive learning in changing environments.

— demonstrated the feasibility of DAEDALUS with obstacle avoidance, in
environments three times denser than the norm. The robot’s online en-
vironment is far more difficult than the offline environment due to the

high density of obstacles. We provide an empirical analysis showing the

feasibility of DAEDALUS in this difficult environment.

— explored the trade-offs of mutation on homogeneous and heterogeneous
swarm learning. We extend our real-time learning algorithm to allow
robots to share their rates of mutation, allowing the robots to find the

right balance between exploration and exploitation.

e Hardware implementation:

— presented a novel robot control algorithm that merges physicomimetics
with obstacle avoidance. We introduce an OAM to the Maxelbot robots
and a novel control algorithm (AP-lite) that reacts to an attractive force

from a virtual goal and to repulsive forces from obstacles.
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9.3 Future Directions

Short Term Future Directions The short term future directions of our work fo-
cus on improving and extending our contributions as well as applying them to provide
practical solutions to complex problems. A significant portion of this thesis is dedi-
cated to exploring the issue related to partial observation. Still, there are significant
issues that arise with respect to“wall following methods” and “local minimum trap”
problems. These issues are not adequately addressed in this thesis. We have observed
“local minimum trap” problem in our work, but we did not make attempts to address
this issue in detail. We intend to introduce a hybrid liquid and gas model combined
with our DAEDALUS approach as a solution. The robots will switch to a gas model
as presented in (Kerr, Spears, Spears, and Thayer 2004) to avoid the “local mini-
mum trap”. Once the robots have escaped they can continue using the previous force
law. The performance metrics we define provide future researchers with meaningful
benchmarks of swarm behavior. A possible extension to these metrics could provide
the distribution of sub-swarms and the number of robots in each sub-swarm.

The results of our heterogeneous swarms are promising, but we believe that robot
behavior can be further improved by different mutation techniques. We intend to ex-
plore other approaches to develop more robust adaptive algorithms for online learning.
We believe that we can accelerate the learning of the mutation rates. For example,
currently, when a robot is in trouble, it receives the rules and mutation rate of a
neighbor that is not in trouble. But this same neighbor could also query the robot in
trouble to find out its mutation rate. Then the neighbor could spread this information
further, to inform other robots that this particular mutation rate might be problem-
atic. Also, another possible avenue for improving the performance of our DAEDALUS

approach lies within reward sharing (i.e. credit assignment) techniques. Current work
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in classifier systems uses mechanisms such as “bucket-brigade” or “profit sharing” to
allocate rewards to individual “agents” appropriately (Grefenstette 1988). However,
these techniques rely on global blackboards and assume that all agents can potentially
act with all others, through a bidding process. We intend to modify these approaches
so that they are fully distributed, and appropriate for online learning of heterogeneous
swarms. Our experimental setup requires further expansion to study the feasibility
of DAEDALUS in structured environments (i.e. connecting rooms separated with
walls).

The results presented using the Maxelbot robots are preliminary. There are poten-
tially numerous application areas that our algorithms and techniques can be applied.
Currently, we are investigating methods to further improve our algorithms, so that
all the Maxelbots in a formation carry an OAM. This requires improving the AP-
lite algorithm to sense and react to all the neighboring robots in the swarm. This
requires improved communication between robots. To implement DAEDALUS with
physical robots, robots require efficient hardware for communication and data ex-
change. The current trilateration hardware and ad-hoc communication network used
by trilateration are not sufficient for the greater data exchange requirements among

robots.

Long Term Future Directions Recent world events have placed increasing de-
mands on the detection and identification of threats that overwhelm current security
resources. Employing robot teams to investigate for threats and foreign objects in a
predefined area will greatly increase resource effectiveness. Robot teams are expected
to play significant roles in future defense, law enforcement, search and rescue, disaster
management, and homeland security tactical maneuvers, by providing the ability to

acquire and process large amounts of detailed information over large remote areas,
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enter areas unsafe for humans, and stay on-task where humans may suffer fatigue or
distraction due to peripheral situational factors.

There is a general need to develop the ability of robots to interact with each other,
as well as with humans. This ability is required for commercial applications such as
map generation, obstacle avoidance, surveillance, chemical/biological plume tracing,
chemical /biological source identification, distributed sensing grids, and mine clearing.
UAVs and USVs (Unmanned Surface Vehicles) are expected to play significant roles
in these applications.

Advantages of UAV and USV teams include the absence of imposed centralized
control, autonomous nature of the team members, and the possible ability of achieving
high connectivity between the team members. Adaptability, or easy adjustment to
changing environment stimuli, resilience to failures due to strength in numbers, and
effectiveness in performing multiple tasks further enhances the mission capability and
reduces the human operator intervention. UAV’s and USVs have been investigated
for their potential to support multiple missions, ability for rapid reconfiguration,
deployment endurance, and to serve as an unmanned platform to provide the human
groups an off-board sensor capability that complements existing systems.

We are able to provide behavioral assurance to UAV and USV teams by

e adapting the physicomimetics framework to incorporate performance feedback

for specific tasks and situational awareness.

Based on the physicomimetics framework, autonomous cooperation will be
adapted to UAV’s and USVs designed to simulate entry into an area with a pre-
defined boundary that is suspected to be penetrated by foreign objects and/or
contaminated by biological or chemical hazards. The multi-USV team will ap-

ply our novel robot localization technology to unify control and positioning
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and data exchange without the need for continuous global knowledge and will
provide necessary performance feedback in conjunction to the environmental

movement.

extending the physicomimetics framework for sensing and performing tasks in

a marine environment.

The objectives of this research include extending the physicomimetics for a
multi-robot team in a fluidic environment that simulates ocean dynamics. We
intend to modify the physicomimetics framework to include a local data ex-
change to monitor relative positioning with respect to whether a USV is delib-
erately moving or idle and combine this data with the global coordinate system
to map the environmental forces, i.e., fluidic motion of the system, that will
subsequently be used by the physicomimetics algorithms to maintain mission
success with minimum energy. The physicomimetics framework will thus incor-
porate a sequence of active and passive relative position monitoring in conjunc-
tion with the absolute coordinate system to provide environmental force data

to the physicomimetics framework.

introducing robot/human roles and interactions to the distributed evolution

architecture.

The objective to develop a software architecture using three critical modules:
observer, command and agent. The observer module will dictate the interactions
of the robot team reporting to the human team. The command module will
dictate the interactions of the human team reporting to the robot team including
overriding safety commands that function to terminate a maneuver in varying
degrees. The agent module will dictate the interactions within the multi-robot

team. The DAEDALUS framework will be introduced to these modules to
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improve the situational awareness of the multi-robot team.



APPENDIX I

Complete Results of Reachability for Offline Learning

Reachability of 20 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.1: Change in reachability over 2000 time
obstacles using Newtonian and LJ force laws
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Reachability of 20 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.2: Change in reachability over 2000 time steps for 20 robots through 40

obstacles using Newtonian and LJ force laws

Reachability of 20 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.3: Change in reachability over 2000 time
obstacles using Newtonian and LJ force laws

steps for 20 robots through 60



Reachability of 20 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.4: Change in reachability over 2000 time steps for 20 robots through 80

obstacles using Newtonian and LJ force laws

Reachability of 20 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Reachability of 40 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.6: Change in reachability over 2000 time steps for 40 robots through 20

obstacles using Newtonian and LJ force laws

Reachability of 40 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.7: Change in reachability over 2000 time steps for 40 robots through 40

obstacles using Newtonian and LJ force laws



Reachability of 40 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.8: Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws

Reachability of 40 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.9: Change in reachability over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws
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Reachability of 40 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.10: Change in reachability over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws

Reachability of 60 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.11: Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws
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Reachability of 60 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.12: Change in reachability over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws

Reachability of 60 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.13: Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws
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Reachability of 60 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.14: Change in reachability over 2000 time steps for 60 robots through 80

obstacles using Newtonian and LJ force laws

Reachability of 60 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.15: Change in reachability over 2000 time steps for 60 robots through 100

obstacles using Newtonian and LJ force laws
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Reachability of 80 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

T T T
100 L -
LJ_80_20

80 + .
%] /
= /
S ’
< 60 ; ,
) /
p /
g /
g J
5 40 i E
o ;
5 /
o /’

20 | ]

0 Newtonian_80_20
1 1 1
0 500 1000 1500 2000

Time

Figure 9.16: Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws

Reachability of 80 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.17: Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws
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Reachability of 80 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.18: Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws
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Figure 9.19: Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws
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Figure 9.20: Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws
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Figure 9.21:

Reachability of 100 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws



Percentage of Agents

Reachability of 100 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.22: Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws
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Figure 9.23:

Reachability of 100 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws
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Reachability of 100 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.24: Change in reachability over 2000 time steps for 100 robots through 80

obstacles using Newtonian and LJ force laws

Reachability of 100 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.25: Change in reachability over 2000 time steps for 100 robots through 100

obstacles using Newtonian and LJ force laws



APPENDIX II

Complete Results of Connectivity for Offline Learning

Connectivity of 20 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.26: Change in connectivity over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws
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Connectivity of 20 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.27: Change in connectivity over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws

Connectivity of 20 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.28: Change in connectivity over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws
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Connectivity of 20 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.29: Change in connectivity over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws

Connectivity of 20 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.30: Change in connectivity over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws
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Connectivity of 40 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.31: Change in connectivity over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws

Connectivity of 40 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.32: Change in connectivity over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws
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Connectivity of 40 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.33: Change in connectivity over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws

Connectivity of 40 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.34: Change in connectivity over 2000 time steps for 40 robots through 80
obstacles using Newtonian and LJ force laws



156

Connectivity of 40 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.35: Change in connectivity over 2000 time steps for 40 robots through 100
obstacles using Newtonian and LJ force laws

Connectivity of 60 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.36: Change in connectivity over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws
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Connectivity of 60 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.37: Change in connectivity over 2000 time steps for 60 robots through 40
obstacles using Newtonian and LJ force laws

Connectivity of 60 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.38: Change in connectivity over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws
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Connectivity of 60 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.39: Change in connectivity over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws
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Figure 9.40:

Connectivity of 60 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Change in connectivity over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws



Connectivity of 80 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety

T T T
100 B
Newtonian_80_20
80 . e —
2 60 .
= . .
@ LJ_80_20
c
S 40} -
20 B
O - -
1 1 1
0 500 1000 1500

Time

2000

159

Figure 9.41: Change in connectivity over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws
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Figure 9.42: Change in connectivity over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws
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Connectivity of 80 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.43: Change in connectivity over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws

Connectivity of 80 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.44: Change in connectivity over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws



Connectivity of 80 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.45: Change in connectivity over 2000 time steps for 80 robots through 100

obstacles using Newtonian and LJ force laws

Connectivity of 100 Robots Through 20 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.46: Change in connectivity over 2000 time steps for 100 robots through 20

obstacles using Newtonian and LJ force laws
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Connectivity of 100 Robots Through 40 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.47: Change in connectivity over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws

Connectivity of 100 Robots Through 60 Obstacles Over 2000 Time Steps -- With No Safety

T T T
100 Newtonian_100_60
80 B
LJ_100_60
2 60+ - .
=
S
(]
c
c
8 40} -
20 B
O - -
1 1 1
0 500 1000 1500 2000

Time

Figure 9.48: Change in connectivity over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws
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Connectivity of 100 Robots Through 80 Obstacles Over 2000 Time Steps -- With No Safety
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Figure 9.49: Change in connectivity over 2000 time steps for 100 robots through 80

obstacles using Newtonian and LJ force laws

Connectivity of 100 Robots Through 100 Obstacles Over 2000 Time Steps -- With No Safety
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APPENDIX III

Complete Results for Newtonian and LJ Force Laws with a Safety Zone

for Offline Learning

Obstacles

robots | 20 | 40 | 60 | 80 | 100
20 96% | 3% | 1% | 0% | 0%
40 5% 1 0% | 0% | 0% | 0%
60 0% | 0% | 0% | 0% | 0%
80 0% | 0% | 0% | 0% | 0%
100 0% | 0% | 0% | 0% | 0%

Table 9.1: Percentage of robots reaching the goal using Newtonian force law

Obstacles

robots | 20 | 40 | 60 | 80 | 100
20 1850 — | — | — | -
40 — - = - | -
60 — - = - | -
80 — - | -
100 — - -1 -1 -

Table 9.2: Time taken by 80% of robots to reach the goal using Newtonian force law
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Obstacles

robots 20 40 60 80 100
20 100% | 100% | 73% | 60% | 63%
40 100% | 100% | 85% | 74% | 72%
60 100% | 99% | 87% | 81% | 74%
80 100% | 99% | 90% | 86% | 79%
100 | 100% | 99% | 90% | 86% | 80%

Table 9.3: Percentage of robots reaching the goal using LJ force law

Obstacles

robots | 20 | 40 60 80 100
20 610 | 660 — — —
40 680 | 740 | 940 — —
60 740 | 810 | 970 | 1300 —
80 780 | 860 | 1000 | 1170 —
100 | 820 | 900 | 1050 | 1200 | 1740

Table 9.4: Time taken by 80% of robots to reach the goal using LJ force law

Reachability of 20 Robots Through 20 Obstacles -- With Safety
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Figure 9.51: Change in reachability over 2000 time steps for 20 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 20 Robots Through 40 Obstacles -- With Safety
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Figure 9.52: Change in reachability over 2000 time steps for 20 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 20 Robots Through 60 Obstacles -- With Safety
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Figure 9.53: Change in reachability over 2000 time steps for 20 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone

Reachability of 20 Robots Through 80 Obstacles -- With Safety
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Figure 9.54: Change in reachability over 2000 time steps for 20 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.55: Change in reachability over 2000 time steps for 20 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.56:
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Change in reachability over 2000 time steps for 40 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.57: Change in reachability over 2000 time steps for 40 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.58:
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Change in reachability over 2000 time steps for 40 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone



Reachability of 40 Robots Through 80 Obstacles -- With Safety
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Figure 9.59: Change in reachability over 2000 time steps for 40 robots through 80

obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.60: Change in reachability over 2000 time steps for 40 robots through 100

obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.61: Change in reachability over 2000 time steps for 60 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 60 Robots Through 60 Obstacles -- With Safety
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Figure 9.63: Change in reachability over 2000 time steps for 60 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.64: Change in reachability over 2000 time steps for 60 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 60 Robots Through 100 Obstacles -- With Safety
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Figure 9.65: Change in reachability over 2000 time steps for 60 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone

Reachability of 80 Robots Through 20 Obstacles -- With Safety
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Figure 9.66: Change in reachability over 2000 time steps for 80 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 80 Robots Through 40 Obstacles -- With Safety
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Figure 9.67: Change in reachability over 2000 time steps for 80 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.68: Change in reachability over 2000 time steps for 80 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 80 Robots Through 80 Obstacles -- With Safety
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Figure 9.69: Change in reachability over 2000 time steps for 80 robots through 80
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.70: Change in reachability over 2000 time steps for 80 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone
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Reachability of 100 Robots Through 20 Obstacles -- With Safety

100 | e

80 | i

LJ_100_20
40 + .

Percentage of Agents

20 + -

Newtonian_100_20

0 500 1000 1500 2000
Time

Figure 9.71: Change in reachability over 2000 time steps for 100 robots through 20
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.72: Change in reachability over 2000 time steps for 100 robots through 40
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.73: Change in reachability over 2000 time steps for 100 robots through 60
obstacles using Newtonian and LJ force laws with a safety zone
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Figure 9.75: Change in reachability over 2000 time steps for 100 robots through 100
obstacles using Newtonian and LJ force laws with a safety zone



BIBLIOGRAPHY

Aoyama, H., K. Ishikawa, J. Seki, M. Okamura, S. Ishimura, and Y. Satsumi
(2007). Development of mine detection robot system. International Journal of
Advanced Robotic Systems 4(2), 229-236.

Balch, T. and R. Arkin (1998). Behavior-based formation control for multi-robot
teams. IEEE Trans. on Robotics and Autom. 14(6), 926-939.

Balch, T. and M. Hybinette (2000). Social potentials for scalable multi-robot for-
mations. In IEEE International Conference on Robotics and Automation, pp.
73-80.

Beni, G. and J. Wang (1989). Swarm intelligence. In Proceedings of the Seventh
Annual Meeting of the Robotics Society of Japan, pp. 425-428.

Bonabeau, E., M. Dorigo, and G. Theraulaz (1999). Swarm Intelligence: From Nat-
ural to Artificial Systems. Oxford University Press, Santa Fe Institute Studies
in the Sciences of Complexity.

Borenstein, J. and Y. Koren (1989). Real-time obstacle avoidance for fast mobile
robots. Volume 19, pp. 1179-1187.

Bruemmer, D., D. Dudenhoeffer, M. McKay, and M. Anderson (2002). A robotic
swarm for spill finding and perimeter formation. In Spectrum 2002.

Cepolina, E. and M. Zoppi (2003, September). Cost-effective robots for mine de-
tection in thick vegitation. In Int. Conf. Climbing and Walking robots and the
support technology for mobile machines CLAWAROS, pp. 683-690.

de Croon, G., M. F. van Dartel, and E. O. Posma (2005). Evolutionary learning
outperforms reinforcement learning on non-markovian tasks. In Workshop on
Memory and Learning Mechanisms in Autonomous Robots.

Deb, K. (1999). Multi-objective genetic algorithms: Problem difficulties and con-
struction of test functions. Fvolutionary Computation 7, 205-230.

Desai, J., J. Ostrowski, and V. Kumar (1998). Controlling formations of multiple
mobile robots. In IEEE International Conference on Robotics and Automation.

Desai, J., J. Ostrowski, and V. Kumar (2001). Modeling and control of formations
of nonholonomic mobile robots. IEEE Transactions on Robotics and Automa-
tion 17(6), 905-908.

179



180

Fax, J. and R. Murray (2002). Information flow and cooperative control of vehicle
formations. In IFAC World Congress.

Fox, D., W. Burgard, and S. Thrun (1995). The dynamic window approach to
collision avoidance. Technical Report IAI-TR-95-13.

Fredslund, J. and M. Matari¢ (2002). A general algorithm for robot formations
using local sensing and minimal communication. IEEE Transactions on Robotics
and Automation 18(5).

Grefenstette, J. (1988). Credit assignment in rule discovery systems based on ge-
netic algorithms. Volume 3, pp. 225-245.

Grefenstette, J. (1989). A system for learning control strategies with genetic algo-
rithms. In Third International Conference on Genetic Algorithms, pp. 183-190.

Haeck, N. (2002). Minimum distance between a point and a line.
http://www.simdesign.nl/tips/tip001.html.

Hayes, A., A. Martinoli, and R. Goodman (2001). Swarm robotic odor localization.
In IEEE/RSJ International Conference on Intelligent Robots and Systems.

Howard, A., M. Matari¢, and G. Sukhatme (2002). Mobile sensor network deploy-
ment using potential fields: A distributed, scalable solution to the area cov-
erage problem. In Sixth Int’l Symposium on Distributed Autonomous Robotics
Systems.

Huber, D. F. and M. Herbert (1999). A new approach to 3-d terrain mapping.
In Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Volume 2, pp. 1121-1127.

Kazadi, S. (2005). On the development of a swarm engineering methodology. In
IEEFE International Conference on Systems, Man and Cybernetics, Volume 2,
pp. 1423-1428. IEEE Press.

Kerr, W. and D. Spears (2005). Robotic simulation of gases for a surveillance
task. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’05).

Kerr, W., D. Spears, W. Spears, and D. Thayer (2004). Two formal fluids mod-
els for multiagent sweeping and obstacle avoidance. Lecture Notes in Artificial
Intelligence 3228.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int’l Journal of Robotics Research 5(1), 90-98.

Kim, J. and P. Khosla (1991). Real-time obstacle avoidance using harmonic poten-
tial functions. In IEEFE Int’l Conf. on Robotics and Autom., pp. 790-796.

Koren, Y. and J. Borenstein (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In IEEE Int’l Conf. on Robotics and
Autom., pp. 1398-1404.



181

Li, L., A. Martinoli, and Y. Abu-Mostafa (2003). Diversity and specialization in
collborative swarm systems. In Second International Workshop on the Mathe-
matics and Algorithms of Social Insects, Volume 39, pp. 91-98. Elsevier.

Martinson, E. and D. Payton (2005). Lattice formation in mobile autonomous
sensor arrays. In Lecture Notes in Computer Science, Volume 3342, pp. 98-111.
Springer-Verlag.

Menczer, F., M. Degeratu, and W. Street (2000). Efficient and scalable pareto
optimization by evolutionary local selection algorithms. Evolutionary Compu-
tation 8(2), 223-247.

Murphy, R. R. and J. L. Burke (2005). Up from the rubble: Lessons learned about
hri from search and rescue. In 49th Annual Meetings of the Human Factors and
Ergonomics Society.

Nilsson, N. (1984). Shakey the robot. Technical Note 323. Al Center, SRI Inter-
national 323.

O’Hara, K. J., V. L. Bigio, E. R. Dodson, A. Irani, D. B. Walker, and T. R.
Balch (2005). Physical path planning using the gnats. In IEEE International
Conference on Robotics and Automation.

Reif, J. and H. Wang (1998). Social potential fields: A distributed behavioral
control for autonomous robots. In Workshop on the Algorithmic Foundations of
Robotics.

Sarma, J. and K. de Jong (1998). Selection pressure and performance in spatially
distributedevolutionary algorithms. In IEEE World Congress on Computational
Intelligence, pp. 553-557.

Sbalzarini, I., S. Mller, and P. Koumoutsakos (2000). Multiobjective optimization
using evolutionary algorithms. In Center for Turbulence Research Proceedings
of the Summer Program, pp. 63-74.

Schoenwald, D., J. Feddema, and F. Oppel (2001). Decentralized control of a col-
lective of autonomous robotic vehicles. In American Control Conference, pp.

2087-2092.

Schultz, A. C. (1991). Using a genetic algorithm to learn strategies for collision
avoidance and local navigation. In International Symposium on Unmanned Un-
tethered Submersible Technology, pp. 213-225.

Simmons, R. (1996). The curvaturevelocity method for local obstacle avoidance.
In In Proceedings of the International Conference on Robotics and Automation,
pp. 3375-3382.

Spears, W. (1994). Simple subpopulation schemes. In Proceedings of the Evolution-
ary Programming Conference, pp. 296-307.



182

Spears, W. and D. Gordon (1999). Using artificial physics to control agents. In
IEEFE International Conference on Information, Intelligence, and Systems, pp.
281-288.

Spears, W., D. Gordon-Spears, J. Hamann, and R. Heil (2004, August). Dis-
tributed, physics-based control of swarms of vehicles. Autonomous Robots 17,
137-162.

Spears, W., J. Hamann, P. Maxim, T. Kunkel, R. Heil, D. Zarzhitsky, D. Spears,
and C. Karlsson (2006). Where are you? In Second Workshop on Swarm
Robotics. Springer-Verlag.

Spears, W., K. D. Jong, T. Back, D. Fogel, and H. de Garis (1993). An overview
of evolutionary computation. In Furopean Conference on Machine Learning.

Spears, W., D. Spears, and R. Heil (2004). A formal analysis of potential energy
in a multiagent system. In Proceedings of FAABS III.

Spears, W., D. Spears, R. Heil, W. Kerr, and S. Hettiarachchi (2004). An overview
of physicomimetics. Lecture Notes in Computer Science, State-of-the-Art Se-
ries 3342.

Spears, W., D. Zarzhitsky, S. Hettiarachchi, and W. Kerr (2005). Strategies for
multi-agent surveillance. In IEEE Networking, Sensing and Control, pp. 929—
934. IEEE Press.

Vail, D. and M. Veloso (2003). Multi-robot dynamic role assignment and coordi-
nation through shared potential fields. In Multi-Robot Systems. Kluwer.

Varakantham, P.; R. Maheswaran, and M. Tambe (2004). Agent modelling in par-
tially observable domains. In Workshop on Modeling Other Agents from Obser-
vations, AAMASO,.

Watson, R., S. Ficici, and J. Pollack (2002). Embodied evolution: Distributing an
evolutionary algorithm in a population of robots. In Robotics and Autonomous
Systems, Volume 39, pp. 1-18. Elsevier.

Wiegand, R. P., A. M. Potter, D. A. Sofge, and W. M. Spears (2006). A generalized
graph-based method for engineering swarm solutions to multiagent problems.
In Parallel Problem Solving from Nature, pp. 741-750.

Wolf, A., H. B. Brown, R. Casciola, A. Costa, M. Schwerin, E. Shamas, and
H. Choset (2003, October). A mobile hyper redundant mechanism for search
and rescue tasks. In Proceedings of the 2003 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Volume 3, pp. 2889 — 2895.

Wu, A.; A. Schultz, and A. Agah (1999). Evolving control for distributed micro
air vehicles. In IEEFE International Symposium on Computational Intelligence
in Robotics and Automation.



183

Yao, X., Y. Liu, and P. Darwen (1996). How to make best use of evolutionary
learning. In Complex Systems: From Local Interactions to Global Phenomena,
pp. 229-242.

Zarzhitsky, D., D. Spears, and W. Spears (2005). Swarms for chemical plume trac-
ing. In IEEE Swarm Intelligence Symposium (S15°05). IEEE Press.

Zarzhitsky, D., D. Spears, D. Thayer, and W. Spears (2004). Agent-based chemical
plume tracing using fluid dynamics. In Lecture Notes in Artificial Intelligence,
Volume 3228. Springer-Verlag.



